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ABSTRACT

Solutions to the kinetic equation of a steady, homo-
geneous plasma of arbitrary degree.of ionization subjected
to strong electric fields are developed. DNonelastic as well
as elastic encounters are included in the analysis. Expres-
sions for the current density, electrical conductivity and
electron temperature of the plasma are also presented. Numer-
ical results are 1llustrated for the case when the nonelastic
effects are neglected. Calculations are presented showing
the transition of the isotropic part fo of the distribution
function from a gas-temperature Maxwellian at near equilibrium
conditions to an electron-temperature Maxwelllan under non-
equipartition conditions. It was found that whenever the
electron-electron to electron-neutral collision-frequency
ratio was much greater than the electron-to-heavy-particle
mass ratio; fo is Maxwellian. When fo is Maxwelllan,
the Chapman-Enskog and Spitzer-Hirm conductivity expressions
developed for the case of weak electric fields are shown to
be applicablie for strong electiric flelds providing that in
these expressions the electron temperature replaces the gas
temperature. An approximate form for fo cuggested by
Ginzburg 1is compared with the exact expression. The accuracy
of the use of a Maxwellian rather than the nonequilibrium
distribution function in the calculation of the electrical
conductivity is assessed.
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NOMENCLATURE
Thls 1s a paftial alphabetical listing of the present

nomenclature, All symbols are defined loéally in the text

where they are first used. Some symboly whose use remains
local will not be found on this list.

An attempt has been made to keep the nomenclature
phenomenologically familiar. This effort has resulted in
" what may appear to be a double meaning for a few of the
symbols. »In any apparent conflict of definitions, local
usaée of the term should leave no doubt as to the intended
meaning.

Latin Letters

As Dimensionless field strength parameter.
2
A = ——Jr.-—-
s aene ee
A(v) Coefficient of isotropic distribution function. .

[See Eq. (53).1

a vg‘,b(v), Coefficients of Eq. (52) [See Table I and
elv Egs. {48) and (51).]

at(v),p'{v) Simplifications of a(v) v), and c(v).
c‘&vg (see Eas. (65), (66), and E 67).1

B(v) Function defined by (63).
bo Impact parameter for a 90° Coulomb deflection.
by = (=) ’
(o} 2
Uy v
c Speed of light,

D{v),D{x) Function describing anisotropy of distribution

function. [See Bq. (33) and Appendix B.]
B, E Electric field .voctor, magnitude-
E Critical electric Tleld for runaway.

E, = 0.427 nc(mv/e)I‘ceBe

e Electron or abuolute magnitude of its
electrical charge.

viii

Nonelastic collisional "gain” term.~‘FNE is
defined by Eq. {A-87).

Functions used to represent the contributions .
to FNE which result from ionization and v

recombination. [See Appendix A.II.B.]

Elgctron veloclty distribution functions.
= £ (V,t), £L = £ (V,0), £, = £ (T ,¢)
(Subscript m defined below y m

Velocity distribution functions for heavy
particles. (Subscript h defined below.)

Isotropic and anisotropic parts of dlstri-
bution function for electrons with speed v.

Isotropic and anisotroplc parts of distribution
function for electrons with speed Vi ¢

Electron temperature Maxwellian distribution
functlon for/electrons.
- e
= ne(-,r—) exp(-ﬂev )
Gas temperature Maxwellian distribution
function for electrons.
0. (82 2
fp o= n (5) exp {-pv©)
?pproximate represehtation for fo . [See Eq.

Center-of-mass velocity. (See Appendix A.I.B.)

Rosenbluth potential function associated with
the diffusion coefficient of the Fokker-Planck
equation. (Appendix A.I.)

Relative veloclty defined by
= -3

h =1V - v

Relative velocity defined by
= |2 -—bl

Eph = ‘Vm T Vp! o

" Function defined by Eqs. (62) and (64),

Parameter associated with Saha equation.

e

H )
2&2

ujm

ix



H{v)

P(x), Q(x),
R{x), s(x),
Q' (x),R'(x),
Q"({x), R"(x).

Rosenbluth potential function assoclated with
the friction coefficient of the Fokker-Planck
equation. {Appendix A.I.)

Planck's constant.

Integral expression defined by Eq. (A-58).

Integral expression defined by Eq. (B-9). '

-

Specific 1ntensity of sz—radiation integrated
over all solid angles.

i(VZJ) = cp(vgj)
Jacobian of a transformation, usually defined
locally.

Electron current density. [See Eq. (4).]
Boltzmann's constant.

Electron mass.

Mass of heavy particle.

Normalization constants for the distribution
function.

Number densitiles: electrons, heavy particles.
Order of magnitude symbol.

Function used in approximating FNE . [See
Eq. (13).}

Differential cross section for radiative
capture. [See Egs. {(A-38) and (A-39).]

Coefficients used in differential equation
describing D(x) .

Legendre polynomial of order m. [See Eq.
(a-51).] .

Total pressure of plasma.
Electron temperature, defined by Eqg. (6).
Temperature of heavy particles.

Approximate electron temperature described
in Section V.D.

Time.

v, vm

D
-
vmm‘
-
Vh
X, X
X

Y, ¥,

Greek Letters

Electron speeds,

Electron drift speed.

Electron velocity defined by [v , ¥, 1.
(See Appendix A.I.B.) . m* X!
Velocity of heavy particle.

Parameters, assoclated with the degree of
ionization, defined in Section III.

Dimensionless electron speed variable used
in differential equation describing D(x).

Parameters, associated with the strength of
the applied field, defined in Section III.

Coefficlents for spontaneous and induced
radiative capture. [See Eg. (4-39).]

Parameters assoclated with heavy particle
and electron temperatures,
m

B = Be = opm
2kTh . Ye 2kTe
Parameter associated with Coulombic encounters.
- Aye =
Fee=-2—ﬂnl\
mg :

Magnitude of the force per unit mass felt by
an electron due to an external electric field.

= eE — ek
V.= - 5 Y, = - =—
me Cc me

Exclitation or lonization potential associated
with a particular transaction. [See Egs. (A-2),
(A-20), and (A-36).] )
Effective mass ratio defined by Eq. (A-54).
Mass ratic defined by
2m .
5, = —<
h mh

-xi



§., 6 Value of & for a fully ionized or very

i n weakly lonized plasma.
6? K Delta function defined in Appendix A.I.B.

€ 3 Azimuthal "scattering” angle following an

m encounter,

4 Parameter defined by

- 80

A Dimensionless parameter defined in Section III.--
A Ratio of the Debye length to the average impact

parameter for a 900 Coulomb deflection.

K = ny/(e?/3xm,)

KD Debye length.
kT, /2
= ()
™, e
Mv) Overall mean free path for momentum transfer.
[See Eq. (A-90).1
RE’ ki, ln Mean free paths for momentum transfer as a

result of elastic encounters. [See Egs. (A-55),
(A-56), and (A-57).]1
XN Effective mean free path for momentum transfer
E as a result of nonelastic encounters. [See
Eq. {A-89).]
9]

ANE Effective mean free path for nonelastic processes

as related to lsotropic effects. [See Eq. (A-88).]

A » AIS » Effectlve mean free paths for momentum transfer
ISJk 0 | assoclated with inelastic and superelastic col-
A 1isions. . (See Appendix A.II.B.1.)
18,5
A
Ink,

A s
InJ

Effective mean'free paths for momentum transfer

A A
TRy’ "125p)associated with ilonization and three-body re-
xR XR combination encounters. (See Appendix A.II.B.2.)
. , :
13" Ry

7\Rec‘w’ onnjz
4

A Effective mean free path defined in Appendix
Bhyy A.II.B.3.

xii

Cosines of co—latitudg angles subtended by
electron velocities Vv, v and the electric
field. - - m

Reduced mass, defined by‘m m

= m M, i " - el L e MMy
- £l = m+ om. 3 = mom
i mtmy i, omgtomy n o omtm,

Frequenc& assoclated with excltation potential
for a particular interaction.

A = hy

ik Bk .
Radlation frequency associated with photo-
ionization encounter.

Electron-electron collision frequency.

v, =nl '/v3

ee e ee

Electron-neutral collision frequency.

Vg =V i l/)xn

Elastic electron-heavy particle collision
frequency.

VEn = V/g

Collision freqdencies associéted with non-
elast;e ‘encounters. .

=¥ : WL =Y
YNE T "NE ; NE T 10
NE

Collision fre?uency used in Frost conductivity‘
expression. [See Eq. (38).] - .

Radiant energy density at frequency VIJ .

Electrical conductivity defined by Egs. (5),
(38), and Section V.G., respectively.

Angular distribution functions assoclated with

‘elastic electron-neutral and electron-ion

differential collision cross sections.

Angular distribution functions associated
with inelastic and superelastic differential
cross sectlions.

Distributlon functions associated with -
ionization and three-body recombination cross
sections.

xiiti



o(x)

Xs Xp

X

€380y

1

wnnz(vzj)
J

Q

Opr Cg3 %y

Superscripts
()
()°
Sk
Subscripts
e
m

NE

cM
Jl k’ ‘e

23, Jk, J4

Error function. ¢{x) = erf(x)

Angle of "deflection" of electrons with
speed V, Vi
Angle betweeny relative velocity vectors

4 and g .
31n 1 -
Radiation distribution function associated

with the probability of photoionization
encounter.

Solid angle used in describing particle -
direction.

Degeneracles assoclated with states of an
atom (“3’ wk) and its ion (wz).

Quantity evaluated before an inverse collision.
Isotropic part of a quantity.
Anisotropic part of a quantity.

Electron.

Indicates association with electron of
speed o . In text m= 0,1,2,3,%.

Indicates association with electron of

speed v, . m' £ m

Ton.

Neutral speclies of type' n . Neutral particles.

Neutral particles of type n 1in states Jj, k .
Ton associated with type n neutral.
Ion, assoclated with type n neutral, in

" 'state 4 .

Heavy particle. h = i,n, J’nk’in nd’
Refers to quantitiles associated with elastic
encounters.

Refers to quantities assbciated with nonelastic
encounters.

Refers to center-of-mass coordinates.

Refers to states of a neutral particle (J, k)
and its ion (£).

Refers to phenomena involving transition
between states 1nd1cated.

xiv

Ex

(%
ExJ«k
Ion
" Ph
E ;IonJ«%’
PhJH£

Miscellaneous

m

Indicates association with 1nelastic and super-
elastic encounters.

Refers to particular nonelastic encounter
and its 1lnverse which results in the neutral

- specliés state changing between J and k .

Indicates association with coliisional ioniza-
tion and three-body recombination encounters

Indicates assocliatlion with photoionization and -
two-body recombination encounters.

Refers to particular nonelastic encounter and
1%s inverse which results in the heavy particle
changing between a neutral in state J and an
ion in state £ .

Equal by definition.
Approximate equality.

_Very much less than.

Very much greater than,

Less than or equal to.

Vector quantity.

Mean quantities used in Appendix A.II.B.2.
Summation.

Atom of type n in state J .

Volume elements in’velocity space.

Differential solid angle.
Gradient .In velocity space.

Gradient in velocity space. Cartesian-
tensor notation.

Tensor operator.

Net energy transferred to electrons via

‘nonelastic collisions. [See Eq. (49).1]

.Rate of change of quantity per unit volume

in phase space as a result of collisions.
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I. INTRODUCTION i _

The accurate prediction of the electron tempersture,
electrical conductivity, ahd other properties in a partially'
ionized plasma with differing electron and heavy-particle
mean energies rests on a knowledge of the electron distribu-
tion function. Of particular interest are conditlons under
which departures occur from a-Maxwellian form for the isotropic-
part of the distribhution. This problem has been treated in
various degrees by other authorsl’2’3’4’5. This treatment
parallels these 1nvestigations soméwhat, the main differences
being the plasma conditions and applications considered, the
treatment of the nonelastic interactions, and the detalled
results.

The purpose of the present study is to find solutilons
to the kinetlc equation of a plasma of arbltrary degree of
ionization when subjected to varlous electric-fleld strengths.
To this end the electron Boltzmann equation is formulated fcr
a spatially uniform plasma, composed of monatomic neutrals,
ions and electrons, in a strong electric fileld. The Fokker-
Planck collision operator is used for the electron-electron
interactions, and the Boltzmann collision operators are used
for the electron-heavy particle encounters. Collective os-
cillations resulting from long-range charged-particle inter-
actions will be assumed absent, Nonelastic as well as elastic
ccllisions are considered. The restriction to monatomic .
heavy particles manifests itself only in the type of non-
elastic encounters allowed. )

For the case of elastic collisions only, in addition to

inding the distribution function, the transition of its iso-
tropic part from the weak-ionization limit to the Maxwellian
form is illustrated analytically and numerically. Calculated
electrical conductivities have beén'compared with the experi-
mental results of Kerrebrock and Hoffman~ and Cool and Zuk05k17
with good agreement. Under the conditions of these experiments,
1



no significant departures from a Maxwelllan form for the
isotropic part of the distribution are predicted by the numer-
ical solutilons. ’

At high electron temperatures the electrons can excite
or ionize the neutral particles. These interactions, which
are usually consildered only as a possible contribution to
the energy losses from a plasma via subsequent radlation,
will be shown to contribute to the caleculatlon of the isotropic
and anisotropic parts of the distribution function.

The details of this work are presented in the following
sections: In Section II the basic equations and thelr re-
strictions are outlined. Section III contains an orQer-of-
magnitude analysis of these equations. Analytical solutions
of these equations with and without nonelastic effects are
presented in Section IV. Results of the numerical calculations
are given in Section V along with some approximate forms for
the isotropic part of the distribution function. Appendilx A
contains the details of the derivation of the basic equations
outlined in Section II. A generalized Spitzer-Hirm equation
applicable to partially lonized gases with and without non-
elastic encounters is derived in Appendix B. Appendix C
contains a brief but adequate dlscussion on the computational

procednres employed.

1I. BASIC EQUATIONS.

Restricting our treatment to a spatially homogeneous
plasma in an electric field, the electron velocity distribu-
tlon function fe(;tt) s normalized to the electron number
density n, , satisfies the Boltzmann equation in the form

o, ., 3. f 3.f_ - £
5?2 + ¥V L, = 5 (—%Ei)n + f (_%?E)i + (_gfs)e
: (1)

- 3 f o_f
+ 2 (—5t)ex + z (5t 10n * = (5t pn -
n

In this equation ﬁﬁ the force per unit mass of the electron
due to a uniform externally- applied electric field, is given
by -e E}me . - The terms on the right of (l) represent the
changes in fe due to elastic and nonelastic collisions.

The first three terms refer to the elastic encounters between
electrons and neutrals, lons, and other free electrons respec-
tively. The subscripts indicate the type of particles inter-
acting with the electrons, and the sums are over the various
neutral and ionic species present. The last three collision
terms represent the nonelastic interactions considered most
important in collision-dominated monatomic plasmas. These
respectively account for

(1) inelastic and superelastic encounters,

(2) tonization and three-body recombination encounters,
and (3) photoionization and two-body recombination encounters,
The sums are over the neutral specles participating in these
interactions,

©oAll heavy-particle distribution functions-are assumed
to be Maxwellian at the temperature Th . The state of the
heavy particles will be indicated by the subscript J, k, or
£ added to the species subscript. These states are considered
to be specified by the principal and total anguiar-momentum
quantum numbers and degeneracies, '

-3



Following the procedure outlined in Appendix A, that 1s,
employing a truncated expansion.of fe in Iegendre polynomials
and the simplifications consistent with the small electron
mass, Eq. (1) with the previously indicated collision terms
can be written as the following coupled equatlons for the iso-
tropic part fo and the anisotroplc part fl, of the electron
distribution functlon:

0 . s 4 0,v
a® 13 { el v groae® Loy L0
+ L= VP - e e ( + 5f y - £V1
§t vl av % B Ay oV 0.0
[¢] O,v 0,
v of ( ? ’ (0] v
- I + I ) = (P n-f7) —=—
3% %0 —1,v} NE A
NE
L (2)
1 1 9
of Bf £
St rer Tt e (3)
The electron distribution function is related to fo and f1

by
£(V,t) = (v, t) + nti{v,t)
where L 1s the cosine of the angle between V and E. This
formulation is valid for f <L f , which implies that the
magnitude of the electron drift veliclty Vp is much smaller
than its thermal speedz’s. This condition will subsequently
be related to the magnitude of the applied field.

Equations (2) and (3) contain the isotropic and aniso-
tropic parts of the Boltzmann equation respectively. The
first two terms of both these equations are the direct result
of applylng the truncated Legendre polynomial expansion to
the left-hand side of (1). The second term in brackets in
(2) results from the isotropic part of the elastic electron-
heavy particle collisions. 1In this term B = m_/2kT, , © is
a mean electron-to-heavy-particle masz ratio, and 'XE is the
mean free path for elastic momentum transfer between electrons
and heavy species. © and 7, are defined by Eqs. (A-54) and

4

(A-55) of the appendix. The remaining terms in the bfacket
correspond to the 1sotropic part of electron-electron inter-
actions. The ‘Ip v2 's are defined by Eq. (A-58). On the
right-hand side of (2) are the imotroplc contributions from
nonelagtic collislons. FNE’ representing a gain of electrons,
and ANE s the effective mean free path for the nonelastic
processes as related to lsotropic effects, are defined by
Egs. {4-87) and (A-88). The first term on the right-hénd side
of (3) includes all the élastic and nonelastic collisional
contributions to the anisotropic part of the Boltzmann equation.
A, the mean free path for momentum transfer, both eiastically
and nonelastically, between electrons and all the heavy parti-
cles, is defined by Eq. (A-90). The last term in (3) is the
anisotropic part of the electron-electron interaction and is
defined by Eq. (A-59).

'If £~ 1is known, the electron current density and the
electrical conductivity of the plasma can be obtained from the
expressions

- : Al P 3.1
Jo = -~ngevp = - e [ vofav 4
and P 2
= Je _ dwe * 3.1
g =3 _?—me'y é vfav. ., (5)
The electron temperature, given by
- me;E- Ham, 4.0
T, = % - T'_ f viEtdv |, (6)

will satisfy the energy equation for the electron gas. Takiné
the energy moment of (1), or equivalently, multiplying the

isotropic equation (2) by my v /2 and integrating over all elec~
tron speeds yields

. : v2
. 0
C— n kT, ) = - f ( )BVEh(ﬁév g%— + fo) &wvzdy
0 meV2 .
+_é (_5'_)(FN - f ) v ﬂvv dv (7)

where VEh = . end ng = —%— .



" III. ORDER-OF~MAGNITUDE ANALYSIS
We will limit the present analysis to the steady state
and henceforth neglect the time variations in Egs. (2), (3),

are of the same order of magnitude, we replace them by a typi-
cal term, namely, the flrst one, which for fo = f can be

{ Since in (8) all of the electron-electron collision terms
|

|

| shown to be

and (7). Equation (2) can then be integrated directly to ; I = VeeV3A' (12)
i 0,0
glive ! .
0 0,v 0,0 i where
v 1 ar® .0y 0% _wae? OV : A= ¢(x) - x0'(x), x =B, v, #(x) = err (x)
% veel - B (Gvav-+B0) -1 3% Y0 Ta1,v 3 € ’
' ’ ’ ' and where v, = n ee/v is the electron-electron collision .
frequency. Under the f° = fo -approxlmation, we can replace
(0] v (8 -
= [ (F £Y) —— dv . 3) . A P |
NE AgE FNE in the nonelastic.collision terms by f£°P , where P is

a measure of the inequality between the actual number densities

Equations (3) and (7) become 1 of the interacting species and their equilibrium values at the

y dfo _ XE_ + (Eai—) (9) electron temperature. P is given by
av - .
2o 1 ge? e 19 B(v) =§ 5 f—— (—41)E 3 4 —1 (—-) 1
%— = é ( 3 ) ov Eh(zﬁv -t f n,k,J n'j n Inj nk n, Eq T, -
o] 2 (10)
-vNEA4wv dv . | |
n. n n n nn
Our objective will be to investigate the solutions of - . s [ 1, ( n ) 1 . nJ ( . inz) N
Egs. (8) and (9) in various regimes differentiated by the g nnj E;;iﬁg e AIonjz = nnJ o Fres
degree of ionization and the field strength. To this end we .
perform an order-of-magnitude analysis of the coupled equations
for £0 and £l which will serve to assess the range of validity - n_ (nening) i . .
i C tions. + s d 1 N ) 13
and illustrate the cqnfluence of these restricted solutil n,4,] nenirz nnJ Eq )\th NE .
In particular, when considering elastic gollisions only, it . j
is possible to show the transition of £ between the forms , |
to the weak and fully lonized limits. The new symbols that appear in this equatlon have been
e °. 0 defined in Appendix A; those subseri ted b Eq - are the
With respect to order of magnitude, we take £ as a . 3 ] pp s , o v qv a
' 1lian distribution function at the electron temperature; “equilibrium values mentioned above. Thg summations ave over
Maxwe o " thé neutral specigs n , their excited states J, k, and the
tbat is, n (5 )3/? e'ﬁév = EO (11) states ‘4 of their related ions. Under quasi-equilibrium con-

ditions at Te 3 P is equal to unity. With these simplifi-

) cations we can represent (8) by
" where Be = me/QkTe .
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% vvzfl _ £0%y3

Be, . 70 3 von %3
B 1 - E') + £72v VA + 2,£ (P-l)—;g; av .

(14)

We treat {9) similarly, replacing (aef ) by the first
term in Eq. (A-59) and using Eq. (A-90). The result 1is

N ¢]
28 vyl
1 NIKAER RN : .

v
th+vNE-8#veé—3;-

where wvyp = v(%hE .
The combination of equations—{14) and (15) yields

2 )
4/38, 7 B VA L\
.fl__s__r___n - 5(3- g2)vgy, + 2ve, + =§-§-I (P-1)—% dv
VERtVNE"*Vee 3 0 ME
” 30 (26)
where (= Bgv £ . Phe left-hand side of this equation,
e

which 1s proporticnal to the square. of . the electric rleld
strength, represents the fercing mechamism for the nonequipar-
tition state. The¢ Serms on the right-hand side represent
respectively the effects of the electron-heavy, electron-
electron and nonelastic collisions in the isotropic equation.
The various collision terms in the anisotropic equation are
shown explicitly in (15) and in the denominator of the left-
hand side of (16).

Now, using the definitions .

Vee o Y Be
X, & =—— and ——g—
h VEh ? ER

Eg. (l@ can be written as

Be . 0 2, 0
— Y - - dv.
E ~ 8(1 B._)+ QAXh + QT-Z f (P l)f YNE v
1+ = Cx ho
Eh (17)
8

It 18 also convenient to introduce the alternate parameters
X and Y . X, defined as the ratio ‘of the electron-electron
collision frequency to the total electron-neutral collision
frequency vEﬁ , 1s related to the degree of lonization. The
relatlon between Xh and X is

X, = S - (18)

Y, defined as the square of the ratio of_tﬁe average energy gained

by an electron between collisions in an electric field to the
electron thermal energy, is approximately equal to the square
of the ratio of the électron drift speed to the mean thermal
speed. Yh s, a measure of the strength of the electric fileld,
is related by Y. by the expression

. 2
Ty - ()T Y . (19)
Since O Xh &< 1, we can conclude that Yh ~Y.

Performing a similar order-of-magnitude analysis on the
energy equation, utllizing here a mean-free-path expression

for the conductivity and constant collision frequencies through-

out, ylelds
O 2
Be 8 w m.V
Y. {5(1- -£)+ NE( gt

neme,O

P v dv)](3'+x ) .

(20)

For a fully lonized gas our model glves ng =0, and

(10) can be written as .

Y ~ 35,(1-8,/8) (21)
which agrees with (20). B, =3n, i/h is the value of &
for the fully lonized gas. .

Although by definition X, Xh, ~and Yh are velocity;
dependent, henceforth they wlll be considered as being mean
values evaluated at the electron thermal speed.

In the following section we will use Eqgs. (17)-(20)'ih
presenting solutions to Egs. (8) and (9) for various values of
the parameters 'X and Y . Before doing so, we investigate

J— 9



the limits on X and Y . From its definition X can vary
between O and o corresponding to a very weakly lonized or

a fully ionized plasma. Y, however, which has a lower limit
of O for the case when there is no applied field, has a maxli-
mum dictated by the condition f1<< fo. This condition causes
Y to satisfy the inequallty (Ymax)1/2 <« 1. ‘

For the fully ionized plasma a statlc instability resulting
from the energy equation places additional restrictions on the
maximum value of Y 129, Using Eq. (21), on writing Y in
terms of Te and E , it is readily found that the maximum
applied field for a stable fully ionized uniform plasma can be
represented by Ymax = 51 . This condition corresponds to
T, =3/27T, .

For a very weakly ionized plasma, undergoing elastic
collisions only, (20) can be used to show that when the electron-
neutral cross sections do not decrease wlth temperature more v
rapidly than 1/(T, V1-T, /T, ) (this is the case for the neutrals
we consider here), the strength of the applied field is not
limited, and the electron temperature increases monotonically
with E . Y Ffor this case, however, will have a maximum gilven
by Sn , its value as T, approaches infinity. Bn is the
value of ©& 'for a plasma that is dominated by neutral colli-
sions. Similar results with ©& replacing 5n apply for any
plasma that 1s not Coulomb-collision dominatedlo. Inclusion of
the nonelastic collisions will usually lower the electron tem-
perature for the same value of the field strength, as a result
of the additional mechanism for the transfer of energy from
the electrons to the neutral particles and possible radiation
losses. This will have the effect of increasing the maximum
possible value of Y for a partially ionized gas. As the
magnitude of this increase is not easlly estimated, we will
take as the upper limit on Y for a partially ionized gas,
based on energy conslderations, the value previously obtained
when only elastic encounters were considered.

10

/

Based on the above analysis, the limiting maximum on Y
for any particular problem will be the most stringent of the
two choices avallable. That is, for any degree of 1ohization,
either (Ymax)l/z K1 orY .<B8, the value of & depending
on the degree of ionization. For many monatomic gases b6 1is
less than 107", and 1t appears that the two criteria are comple-
mentary.

We note that Yh can be related to the discharge para-
meter E/p and to Ec s the critlical electric fileld for run-
away in a fully ionized gas1 s> by the following expressions:

Y. = (E/ )2 2 _82 2
h P 3 5 (22)
: ev
Eh
and
2, .2

o~ ¥/, s (23)

where p 1is the total pressure of the mixture and Yo = eE_/m,

From (23) and the limits on Yﬁax we see that we consider
only electric fields for which v Yo in this analysis.

11



Iv. SOLUTIONS
We first consider the solution of (8) and (9) for the
case where only elastic collisions are important. Iater in
this section the effects of the nonelastic terms are discussed.

A. Elastic Collisions Only
When the nonelastic terms are neglected, (8) and (9)

beeome N B
) 0,v 0 0,v O,m
-’3!v2f1 %—-‘%(-2-]—: -——gf + 889+ 97 4 -%———-"5 (z +1
E 0,0 2,0 -1,v
(2n)
and dfo 1 B el
y«a—-—= _T.+ (—a——') . (25)

The solution of these eguations for various vélues of the
parameters X and Y can best be described with the aid of
Fig. 1, where we have taken Ymax as B . This figure guali-
tatively illustrates the regions of applicability of these
solutions.

Expressions (17} and (20) with the nonelastic contribu-

tions deleted become

'I‘C'K"?h -~ 8(1- -g-e-) + 20X, (26)
Y ~ 8(1- e)(l+x ) . (27)

1. Equipartition of Energy

Values of Y very much less than & correspond to
weak electric fields and thus to equal electron and heavy-.
particle temperatures as can be seen from expression (27).
Accordingly, only the collisional terms remain in (26) or in
the isotropic equation (24) for this case, The following
identity, which is true for 0 = FO at any T, , is easily
verifié&sz

4 v 0,v 0,0 0,v
—( ’ (28)

Thus {24), for weak electric fields, is satisfied by a
Maxwellian distributlion function at the gas temperature.
That 1s, for Y << & and for any X we find
020 B)7 PV =50, (29)
For weak flelds, the weak lonization limit occurs when
X << 1., The fact that £ in (26)}has.a maximum of about 7;1'
indicates that we can neglect the electron-electron collision

terms in (25) for this range of X . Thus, in this weak
ionization limit we find '

RS LT
v av (30)
which becomes
£l = 292 pFo
Yhghip (32)

when Eq. (29) is utilized., The electrical conductivity can
be evaluated for this case by combining (31) with (5).
Spitzer and Hirm's 12 results for fully ionized plasmas
apply whenever X >> 1. This can be illustrated as folloﬁs:
If the denominator of the left-hand side of (26) is written
in terms of X , via (18), it becomes apparent that we can
neglect the electron-neutral collisions in this case. Then

(26), with £° = ?g can be written as
1
0 1.1 Ocf ’
2pVYLy = vf f 7— - (_SE“) . (32)

If now we represent fl as a multiple of fo ; that-is,
1o p(v)r% , ang set s 1/A = vo/v » (32) can be reduced
to i )
d D
' dx .
where. x = JVBv . This equation is identical to the~ohé solved
numerlcally by Spitzer and Hirm. The terms P(x), Q(x), R(x),
and S{x) are identicak.to the P, Q,VR and' S of Spitzer and‘
Hdrm for the case when their mean ionic charge factor equals
unity. [In Appendix B we derive the Spitzer-Hirm equation for

Dy p(x)4R + Q(x)D = A(x) + S(x) (33)

13



the more general case of a partially lonized gas. This
development leads to Egs. {(36) and {37) below.] The conducti-
vity can be found in terms of D(x) by means of (5). Spitzer
and Hirm tabulate D(x) and give the followlng expression for
the conductlivity: .
0.582 m,
TP Pmi

R is the ratio of the Debye length to the average ilmpact
parameter. for a 90° Coulomb deflection.
In the region between the weak ionlzation and the fully
ionized limits (25} becomes £
~o vl [ %ef
2BVYEg = T (-gt—)e . (35)
Again setting 1 equal to ©p, Eg. (35) can be reduced to
an equation which is identical in form to (33), with Q and

(3%)

R replaced respectively by o Vg (x)
n
Qi(x) = alx) - £ (36)
(x) = alx) 3. (%)
and 4 o V (x) 2
) = _26x” 3 6,2 _5_(_71" =*"pa
R'(x) = R(x) v (1 X ) é TR e D ax,(37)
where

vEn(X)AEJ‘Lg‘ i ‘%; .
This resulting equation can be solved by the Chapman-Enskog
method, that 1s, by expanding p{x} in a series of lLaguerre
polynomials and utilizing their orthogonality properties, and
the electrical conductivity can be accurately determined.
This has been done by Shkarofskys. Schweitzer and Mitchner
sblved the equivalent problem uslng the Boltzmann collision
" gperator for the electron—electron interactions. In addition,
the latter authors verify the accuracy of an empirical mixture
rule by Frost14 for the calculation of the electrical conducti-
vity in this reglon. The Frost conductivlty expression for

13
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this case 1s

4re v
o, = — =— dv (38)
F 3me, o V¢ 9V '
where
- 009 2
Ve = Vpn +—2_v Y0 JB .

We have examined this equation for several experimental cross
sections and confirmed Schweitzer and Mitchner!s observations.
These results will be presented later in Section V.

2. Noénequipartition

In the nonequipartiticn case, when Y << 6 s -the

*preferential energy addition to the electrons by ‘the electric

fileld is sufficiently great that the mean electron energy
exceeds the mean heavy-particle energy. The energy equation,
when nonelastic effects are neglected, can be written as

L2
2 o m.V (o]
L. ! () Byl 3= + Oy . - (39)

To evaluate this equation or Eg. (6) for the electron temper-
ature, we need to fingd f )

The weak ionization limié fof strong fields occurs for
X << ® . We see from (26) that for this case we can neglect
electron-electron collisions in both the 1sotropié énd aniso-
tropic equations. Then Eqs. (24) and (25) can be combined into
a first-order linear differential-equation .for fo' which. can
be solved to yield ’ ' '

o v :
Oy el - [ vy Ly
o ’ y?\E
(1+ %-—-§—)

ov

NO is a constant of the integration and can be evaluated by
normalizing fe' to ng - Since'the electron-electron and
the total electron-icn collision fregquencies are of the same
order, the electrcn-ion collision terms can also be neglected

15



2.2

3 BY g

when evaluating ] a.ndY L In.(ho) the term 3”'_7?' LT W

be approximated by &-5— -

bution is Maxwelliaﬁ at the gaé temperature, while for a sLRONE i i
field it can differ significantly from a Maxwellian distribu&;oamwwymﬁ
B >> Bys s

. For hard-sphere molecules in a strong.electric fleld,,ls
{4) redquces to the well-known Druyvesteym distributian Ze. BOD.
any arbitrary cross section the anisotrcpic part £ of the.s-
distribution can be obtained from Eq. (30). The electrical
conductivity, (5), then becomes

Y4 2 =w 3

a=_?%{> VE ()

dv.

=~
Q»Q-
<1

In the less restrictive case, when X < 1, we can neglect
the electron-electron collisions only in the anisotropic equa-
tlon; el 1s again given by (30). Equations {30) and (24)

can be combined into a first-order integro-differential equa-.. .

tion which can be integrated to yield

v {1+ —'“&' 1 ) 28vdv
= Nyexp- S . (#2)
[o] llﬁ?\E ( O,V Io,co 2)\ )
1+ I + + ¥
36v2 2,0 ~1,v E
NO is agaln the normalization constant for fe . This
eguation can be solved by an iterative technique. We have

done this numerically and will discuss these results later.
The electrical conductivity for this case can be Ffound by the
use of the solution to (42} in Eq. {41).

An examination of {26) reveals that whenever X >> b,
corresponding to a partially tonized gas, and Y £ 6 , the
only significant terms remaining in the Isotropic equation
are the electron-electron collision terms. That is, (24)
reduces to

~ O,V Q o,v O,»
£01”’ +V%—(.I’ + I =0. (43)
0,0 2,0 -1,v
16

Thus, for a.weak field tbe;ﬂistxig _—

. manner,

D(x)

The soluticn to this equation 1is, as—may be verified~by sub, o
stitution and use of’(28), ’
3/2 -8 v
0 =0 - 3/ e
,f' = = ﬂe(?-) e L. (42‘)
That is, the isotropic part of ‘the distribution’ Purictidh Satis-
fying (43) is Maxwelllan although-at an elevated temperatube:
The electron temperature is determined from-{39) which:&dt be
writtes now as - ’ g

2 ©
4L - om (1—:—9)‘1 8 45 #0 gy . (45)
The eguation for fl for this case becomes
= 1 3.t
BT = - (T-) ) (46)

Eguation (46) is identical to {35) with @° replaced by Be.*-
Since the temperature in the anisotropic equation appears

cnly in the Maxwellian fo » results found for the weak-field-:
case can be validly extended into the strong-field region
simply by replacing Th by Te . Thus, bepween X 3> 56
and the fully ilonlzed limit, the results of the Chapman-
Enskog expansion can be extended to strong fields 1n'this'

In accord with the results of Schweitzer and Mitchner,

. we would then expect the Frost conductivity expression with
T BY replacing 8

to give accurate approximate results for
strong electric fields. This cohcept has been tested numer-
ically and will be discussed later. '

The fully ionized gas,
the situatlon just deseribed.
with x
field region.

¥ > 1, is:a special case of

redefined as Jbev , 1s then valid in ‘the strong-
Accordingly, the electrical conductivity is

‘given by (34) evaluated at the electron temperature. The

electron temperature is as beforc obtained. from the energy
equation (45), which for this case is

An equation identical to (33) with @ and R replaced. by
Q@' and R' from {36) and {37) and with x defined as
VB,V could be derived from (46). '

17
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B. Nonelastic Effects )

In this subsectlon we present formal solutions to (8) and
(9). These solutlons are then related to the previous elastic
results.

1. Preliminary Comments

Equation (17) allows us to draw the following general
conclusions:

a. If ng <L 5th or ng <L Vee at the energy where
the nonelastic collisions may be significant, the nonelastic
effects can be neglected and the elastic results remain valid.

b. If VNE <L YEh at all energies, the nonelastic
collisions can be neglected in the momentum equation. For
cases in which this holds, fo WOuld be determined as out-
lined below and fl would be found from (25).

It 1s difficult to assess nonelastic effects in other
than a gross sense unless a specific model of nonelastic be-
havior is chosen. We confine bur remarks to three classes of
nonelastic behavior characterized by whether for each nonelastic
interaction” the rate of upward induced transitions (A) exceeds,
(B) is less than, or (C) is equal to the frequency of inverse
downward transitions.

For class (A) we expect the net energy transferred to the
electrons by nonelastic interactions AENE to be negative cor-
responding to electron kinetic energy being transferred to
potential energy of the bound electronic states of the heavy
particles. Class (B) behavior would result in AENE being
positive. Class (C) would correspond to no net energy transfer
by nonelastic collisions. )

In a real plasma, depending upon the constituents, their
energy, and other physical parameters, any combination of the

*
Described in the sense of Eqs. (A-2,3,20,21, and 36.)
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classes can exist. Class (A) behavior when caused by radiation
escape forms an interesting problem in high-temperature plasmas.

Before proceeding with the general analysls we examine
qualitatively the following nonelastic terms which appear in
the isotropic and energy equations:

1 A o] v3
zec(v)=sf (Fyp - ) dv , and (48)
2 o NE AgE
2 .
o m VvV - 3
AEyp = 4T cf) ()N Fyg - £9) ‘7’\1- av . (49)

NE

The electron continuity equation for the steady state results
in

c(w) = 0 . (50)

An investigation of the form of FNE confirms that the
integrands of both ce(v) and AEyg vanish for all v when
the plasma is in equilibrium or O = O and Boltzmann statis-
tics at Te apply. In these cases detailed balancing occur:
and the nonelastic interactions do not influence the isotropic
part of the distribution directly. However,.as will be dis~-
cussed later, the nonelastic interactions may still contributg
tc the evaluation of fl and thus the current density, the
electrical conductivity, and indirectly to fo through Té
via the energy equation. :

The fact that (50) always holds implies that whenever
AEyp 1s negative, (FNE - fo) must {on the average) be posi-
tive for low values of v and negative .for very large values
of v . Hence, we expect ¢(v) > O when it is not ldentically
zerc for éll v . This last statement, which 1s true if
(FNE'- fo) = 0 has but one root for v > 0 , may not be cor-
rect for complicated interactions in which many different
threshold energies exist; however, on the average it should
be vaiid. Similarly, for class (B) behavior, when OBy is
positive we expect c¢(v) ¢ O . By definition class (C)
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behavior corresponds to c¢(v) = O . Henceforth, we will con-
sider the designations c(v) > 0, e(v) ¢ 0 and e(v) =0 7
as synonymous with the classes (K), (B) and (C) respectively.
2. Weak-Fileld Case
When the plasma 1s exposed to weak electric fields
such that Y << 6 , we can neglect the left-hand side of ’
Eq. {17). This corresponds to writing (8) as

Y20, 2 0 | (51)
where 0,v O,00
1 (8 4 4 2,7 ’
alv =-—-—-[——V+ BV(I + I )]J
A 3 2,0 -1,v
o,v
b(v) = %‘ vu + 21 , and
E 0,0

e(v) is given by (48).
Equation (51) can be integrated to yield

0 = exp © [Ny - [ 7z exp av} (52)
0

which reduces to (29) when c(v) = O . N, is the normaliza-
tion constant. For Y << & , we previously found that Te=Th
when nonelastic effects were neglected. Their presence here
when c(v) > 0, however, has the effect of lowering Te below
Th' Physically in this situatlon electrons lose energy to
the heavy particles during the nonelastic encounters and gain
energy from the heavy particles during elastic encounters.
Analytically, ec¢(v) > 0 should manifest itself in a
change in fo away from ?T . In particular, we would expect
the tail of the distribution to be depressed relative to the

Maxwellian distribution at the gas temperaturele. To illus-
trate this effect, we let the solution to (51) be given by
0 = £2 a(v) (53)

where ?g is the solution when c(v) = 0 . Combining Egs. (%3)

20

and (51) results in the following equation for A(v):

da [
ST =5 (54)
av afT.

Integrating this equation we obtain

v
A(Y) = A(0) - [ —Zyav (55)
0 af :
b _
‘where A(0) 1s determined from the normalization of £© , The

integrand in Eq. (55) is positive (on the average); increasing
and then decreasing with v . Thus A(v) decreases nearly
monotonically with v from A(0) and, as expected, the
tail of fo will be depressed relative to Fg B

For this case, if c(v) < 0 the tail of 9 would be
elevated relative to ?g s> the electrons would gain energy
via noneJastic encounters and lose energy elastically, and
the electron témperature would be greater than the gas
temperature.

Now, if in addition to consldering only weak flelds here,
we further restrict ourselves to X << 1 (the weak-lonizaticn
1imit), Eq. (9) can be written as

0
1 Ay df
£ = - e (56)

The electrical conductivity can then be cbtained from (5).
In a fully lonized gas, based on our model which neg-~
lects multiple ionizations and exqitatidn interactions between o
electrons and ions, we have c¢{v) = 0 and therefore the
elastic results [(32) to (34)] apply directly,
Equation (9) for ¢l applies between the weak-ionization
and fully ionized limits. When c(y) = 0 , corresponding to
an optically thick plasma, this equatioﬁ can be written as

2 - . .
3—% + B(x) 32+ Q"(x)D = R"(x) + S(x) (57)
X
where
X = “/-BV 3
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Q'(x) - KLEH , and (58)
6 x2 j”r——‘(f-; e D ax .
(59)
Equation {57} can be solved by the Chapman-Enskog expansion
technique. [A method of deriving Egs. (57), (58) and (59)
is described in Appendix B.] wWhen c(v) # O the eguations
become much more compliéaéed and will not be discussed here.
In line with the mixture rule of Frost {38) presented with
the elastic results, one might expect a simllar mixture rule
with Ve replaced by vyt YNE to give reasonable results
for the conductivity between the X << 1 and the fully
ionized limits.
" 3. Strong-~Field Case
As can be seen from the energy equation and the sign

of AENE , the inclusion of the nonelastic collislions in the
analysis changes Te relative to its elastic value., Once
£° is determined, (6) can be used to Find T, -

As was found to. be true for the weak-field region, in
each case to be discussed below the effect on the isotropic
part of the distribution function on nonelastic interactions
when c¢{v) > O 1is to depress the tail of 9 relativée to
its c(v) = 0 counternart. The opposite effects will occur
when c(v) < 0.

For any degree of ionization and strong fields {(8) and
{9} can be combined into a linear first-order integro-differ-
ential equation for fo which when integrated results in
an eguation identical in form to (52) with a(v) and b{v}
given in Table I. ) '

In the weak ionization limit all Coulombic interactions
are neglected and 0 1s given by equation (52) with a(v)

..and b(v) from Table I. Here when bf~ >> ¢ or Vgn >> VNg
(52} reduces to the form of .the elastic solution (40). The
presence of A rather than A; in a{v) , however, causes

Q"(X)

it

R"(x) = R*(x} - 3{ (1-

2z

Coefficients for Eq. (52)

"TABLE I.
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the solution to differ from (40). Since A 15 less than Ag o
even if c(v) = 0 the existence of nonelastic colllslons
whenever the electric-field term‘in the. isotropic equation is
significant in the evaluation of £0 would still tend to depress
the tail of the distribution relative to the elastic solution.
The electrical conductivity (5) for thils case 1s evaluated
using £l as obtained from {56) with the electron-ion inter-
actions neglected in A .

As was the case for elastic collislons only, when X<l
corresponding to a weakly ionized plasma, we can neglect the
electron-electron collisions in (9), and fl is again given
vy {56). This equation when combined with (8) and the result
integrated yields (52) with a and b from Table 1 ror 0.
when c(v) = 0 , this result reduces in form to its elastlc
counterpart, Eq. (4#2). A comparison of vNg and ng with
YEn will indicate the relative importance of the nonelastic
collision terms. The electrical conductivity for thls case
is determined by combining Eqs. {56) and (5).

In a partially ionized plasma, for which X >> 5 and
Y06, the electron-heavy particle collision terms and the
field term can be neglected in the isotropic eguation. This
equation can then be integrated to yileld (52) with a(v) and
b{v) from Table I. When c{v) = O , this result reduces to
(44). From the differential equation (8) it is apparent that
the nonelastic terms can be neglected when bfo >> ¢ or
Voo 3> Vg -

. In an optically thick, partialily ifonized plasma [c(v)=0]
the nonelastic terms do not contribute to the calculation of
the isotropic part of the distribution funetion; however, they
can affect the evaluation of the transport properties as a
result of the momentum transferred between electrons and the
heavy particles during the nonelastic collisions.

This effect can be 1llustrated by evaluating the effective
mean free path for momentum transfer as a result of nonelastic

2h

collisions under these conditibns, where use of Boltzmann
stapistics and the Saha equation, evaluated at the-eiectfon .
temperature, are also valid. To.simplify the develobment'we - .b
will work in the region on Fig. 1 between X >> 8 “and K
X << 1 . In this region Egs.’ (56) and (44) applied to each '
nonelastic interaction yield the following relation between
the isotroplc and: anisotropic parts of the electron distri-
bution function:

o fé My, )ed

T (60

f
The subscript m , ¢orresponding to similar subseripts appear-
ing in Eg. (A-87) and other. subsequent equations in Appendix A,
will take on integer values between O and 4 depending on the
energy of the free electrons participating in the various
interactions. For 1nelastic and superelastic collisions, use
of Eq. (60) and the Boltzmann relations 1in Eq (A-69) yielde

Ll - n o tl- 2vo) cos Xn JdO,
xISSX) R ) O’ Ocy
Av,)
+n_fod (2- i cos X, )&, -
ne e NY) Iom™ lew
where

2 1/ 2 2
—_ and v, =\/v" + S= A
m 1
m, an

e

The effective mean free path for momentum transfer resultiﬁg
from ionization and recombination interactions, Eq. (A-79),
becomes on use of ‘the Saha equation and (60):

1 . jvumaxf (2 A(vz) o . A(v )
AggggV) 55 Y 2 i Xoom ~ XTVT 08 Xy )
1 v
ni 2. . 3max M"’1)
[ an an, v, "dv), 4+ n . 1w [oF)
ejion 20m 420y 4 A. 1g é ) I i{?j‘c xlCM .
A(v

J
+ MY 5 o v v)v3 3 3i 2recd91
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with v2 and vq glven by

2 2
Vo =\ vE-v," - =— A
2 4 mg, njﬂ

and
v A .
17 m, ng
Except for the k(vm)/k(v) ratios, the above equations for

A and A have the familiar structure of momentum
ISJk IR, ,

transfer mean free paths for elastic collisions. If no net
momentum were transferredvvia nonelastic encounters, we would
expect 1/7\NE =0 forall v . I[If vl/ANE # 0 the net momen-
tum transfer as a result of nonelastic interactions could
vanish for particular combinations of ANE and fl which
result in
éwv3vNEfldv =0.
Since fl(v) and VNE(V) are independent, this would gener-
ally not be the case.] The effective mean free path for momen-
tum transfer as a result of photoionization and 1ts inverse
is greater than zero.

From their above forms, both l/?\Isjk and 1/)\IR

would not generally equal zero even if we assume I/ANE =
in their evaluation. This fact coupled with xPh > 0 leads
to a contradiction of the assumption that 1/7\NE = 0. Thus
L/ % 0 and the nonelastic collisions contribute to the
calculation of £ [via their contribution to A 1in (56)]
even though they.do not directly influence the isotropic
properties. )

It is. interesting tonote that for some A(v) behavior
it would be possible here to obtain negative nonelastic contri-
butions to the total collision frequency. This could be
interpreted as a galn of momentum by the electrons in the
range dv about v via the nonelastic encounters and result
in a probable enhancement of the conductivity.

o6

Although illustrated for a limited range of X , the same
conclusions are expected to hold for all degrees of ionization
in an optically thick plasma for which fo = ?o. The electron
temperature is also affected in the above optically thick case
through the Joule heating term in the energy equation (45).

To determine i"l in this case (9) can be cast into the form

of Egs. (57), (58), and (59) with x defined as Jbev. Thus,

as in the case of elastic collisions only, the results found

in the weak-fleld region can be extended into the strong-field
region by simply replacing Th by Té - The mixture rule pro-'
posed earlier becomes similarly applicable for these nonequi-
partition cases.

Based on our model, a fully.ionized gas isbdescribed here
by the strong-field results for elastic encounters as in the
weak-fleld case.

With the use of an order-of-magnitude estimate (52), for
a weakly ilonized plasma, can be shown to go over to the equa-
tions which are valid on the extremities of the region of its
applicability.
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V. NUMERICAL RESULTS

Equation {42) has been solved numerically by an iteration
technique, and the results have been used to find the electri-
cal conductivity, current, density, and electron temperature
for various lonlzed gases. The plasmas consldesed were pure
argon, potassium-seeded argon, and potassium-seeded helium.

.. The. seed fragtions indicated on the. figures include. potassium.
" “4ons as we¥l as peutrals. : : o

) The form of f° for various field strengths and degrees
of ionization has been investigated numerically when non-
elastic terms were neglected and will be discussed below. In
addition, other calculations were performed to test the valid-
ity of an approximation to {42). In the region of Fig. 1
where X << 1 , a comparison has been made between the use of
(42) and a Maxwellian @istribution for the calculation of the
electrical conductivity and the electron temperature. We have
also compared the calculated conductivity-current density
characteristics with the experiments of Cool and Zukoski and
Kerrebrock and Haoffman.

In presenting numerical results we have restricted our-
selves to the consideration of only elastic encounters, and
we have assumed that the number densitles were either known
or determinable via the Saha equation evaluated at the elec-
tron temperature. While use of the Saha equatlon is correct
only for equilibrium conditions, it gives results which are
indicative of what one might expect in a realistic situation.
To include the nonelastic terms quantitatively would require
a simultaneous solution of the rate equations for the state
populations of the individual species with‘Eq. (l). Prelim—
inary results of the effect of a non-Maxwelllan distribution
function on the rate equations»gre presented in Reference 17.

e

A. Bvolution of fo
In Fig. 1 we see that the region in which (42) is valid
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overlaps the regions in which other forms for fo [BEgas. (29),
(40), and (44)] are also valid. It-is pussible, by an order-
of-magnitude analysis, which makes use of (12) and (28), to
cast {42) into a form which reveals the variation of 0 with
¥ and Y . In particular, we can demonstrate the evolution
of 0 from its form in the weak-ionization 1imit to the
Maxwellian form applicable when X >> 6 . »

This transitlion of fo between the aforementioned limits
has been studied by numerical integration of (42) in the region
wheré X1. Typical‘results’of this computation appear
in Figs. 3, 4, 5, and 6. In such calculations the energy
equation was used toffind the electron temperature in the limit
whenever the distribution function was Maxwellian.

Figure 2 shows typical variations of X and Y as the
electric field is increased at a constant degree of lonization
(----), as the degree of ionization is increased for a fixed
electric field strength (o —3}, or what 1s more realistic,
as the electric field is increased and the degree of ionization
is adjusted to correspond to the Saha equation at the mean
electron energy as the electrons become more energetic (
The character of fo along these trajectories is determined
éccording to the region within which the trajectory lies.

By fixing the degree of ionization at a relatively low
level, we illustrate in Fig. 3 the transition of the distri-
bution function from the weak-field (gas-temperature Maxwellian)
case to the strong-field (Lorentzian) case. This result is
for the He-K system corresponding to curve .ITa of Pig. 2.

Pigure 4, corrésponding to curve IIb of Fig. 2, shoﬁs
how the distribution evolves from the strong field, weak ioni-
zation limit to the strong field, partially ionized case.
{Here the electron number densities were chosen so the condi-
tions for curve III .in Fig. 4 would be similar to the 10 v/cm
curve of Fig. 5.) The crossing of the curves on Fig. 4 at
gbout 1 ev indicates that, for roughly the same electron tem-
perature, the Lorentzian'distribution function is depressed

).
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/ .
=
Y«§ /
IV/ v
X% X>6 X< X>>|
I: Pure Argon, T, = 3000°K, p = 0.1 atm.
II: He-K, nK/hHe = 0,001, Th = 1250°K, p = 1 atm.
III: A-K, hK/hA = 0.001, Th = 1250°K, p = 1 atm.
IV: He-K, nK/hHe = 0.0032, T, = 2000°K, p = 1 atm,
V: A-K, nK/'nA = 0,004, T, = 2000°K, p = 1 atm,

— — ~— e~e collisions neglected, number densities fixed at

equllibrium values corresponding to Th.

Figure 2. Approximate Variation of X and Y
for the Cases Considered.
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in the high-energy tail relative to a Maxwellian distribution
function.

Figure 5 illustrates the evolution of the distribution
function from a gas-temperature Maxwelllan to an electron-
temperature Maxwellian, which occurs as the degree of ioniza-
tion increases [curve IIc, Pig. 2]. Figure 6, corresponding
to curve I of Fig. 2, illustrates this transition for pure

argon. The- A—K,system correspanding to curve III of Flg. 2 |

-also undergees & -similar transitlon; -however, it exhibits less
pronounced non-Maxwelllian characteristics as might be expected
as a result of its location on Fig. 2. The differences in the
cross sections and the masses of helium and argon cause the
displacement between curves IIc and III on this figure.
Another consequence of these differences 1is that a stronger
applied field 1s necessary for He cempared to A to achleve
significant electron heating.

B. Approximate Forms for fo

As a result of the complexity of (42), Ginzburg and

Gurevichu, consldering ?0 as the zeroth approximation to

fo , proposed the following first- order solution as a conven-

ient representatlon for fo :

2hg
v (1 + —F N, Tie A)2Bvdv
% = N,y exp - ov e (61)
' Ag y p MEY
(l+éLe—5—V-n-neFeeA 35 v2)

1r 70 1is substituted into the right~hand side of (42)

(61) follows. Equation {61) has all the characteristics
of fo and agrees exactly with (42) in each of the weak-
ionization, the weak-field, and the Coulomb-dominated limlts.
Only the electron-electron interaction terms in (42) were
directly affected by this approximation. Since these terms,
when they are significant, tend to Maxwelllanize the distri-
bution, the use of ?0 in evaluating them might be expected

36

to yleld reasonable results in the regions between the afore-
7mentéoned'limits, The approximation f01 has been cdmpared
to £ numerically, in the region where 0 differed signifi-

-cantly from a Maxwellian form, for several gases. Typical

results are presented in Fig. 7. For each case the electron
number density is based on the Saha equation at the temper~
ature calculated on the basils of ro or ~f°l . 'Observé that
the approximate form yields a somewhat different electron
temperature than ‘that obtalned from the exact calculation and '’
‘that the respective number densitles on the basis of the Saha :
equation are significantly dlfferent.

Since the solutions presented 1n‘Sec£ion IV-B are so
complex, it would be useful, even at the sacrifice of some
accuracy, to develop approximate forms for the distribution
function analogous to (61) which account for nonelastic en-
counters.

All of the solutlons, when nonelastic effects are inciuded
can be written in the form

9 = O(v)B(v) (62)
where
. - v .
B(v) =1 -é ;;T dv (63)
and
0 _ v
g =N, exp{—g gdv . (64)

In particular for the case of a weakly ionized plasma, 1f we
assume that the ‘zeroth Spproximation for the distribution
functicn 1s given by ¥ , then we find from (52) and Table I

that
. . . 4
b - 1E~6L
b e +2n " A, (65),
4
2 al = QﬁV[TE— g; 2nereeA + % 5V272)) (66)
and v o 0 v3 ‘
c el =22 - L
¢ E!)'(P 1) F 0 av . (67)
NE
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Te * 3423°K -
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e 3000°K
p=0.l atm
red ng from Soho eqn. ot Te
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Pigure 7. Comparison of fo. with the First Approximation.
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! A ‘
Usually Ag(v) < Ng(v) which implies B < A< A - Thus
A= O(AE) and we can approximate A by Mg in a' and then
with (61) obtain

0 01
g L 68
No " Fop es)

Combining these results, a first approximation to (62) can be
written as

0l v '
£k = ({ro—l-) Ny - |~ av). (69)

0 al(for)

In this equation (f01/N01) is the normalized elastic approxi-
mation given by (61), subscript NE is to emphasize that this
1s a nonelastic approximation, NNE is the normalization

constant for fgé y .and» aﬁ is- a' with A replaced by 7‘E .

C. Conductivit

Figure 8 shows a comparison of conductivities o and o
calculated with (41} using respectively the nonequilibrium
distribution function (42) and the Maxwellian distribution
?O. The same electron temperature and the same electron den-
sity are used for both ¢ and Oy - Thus the ordinate is
essentially an electron-mobillity ratio. The abscissa is a
measure of the applied field. The dotted curves on Fig. 8
(and Fig. 9) correspond to a constant degree of ionization.

As the field strength is increased, a constant degree of ioni-
zation represents the meximum departure of the distribution
function from a Maxwellian. Thus these dotted curves illustrate
a measure of the maximum departure of the approximate conducti-
vity from the actual one calculated on the basis of the non-

M

cequilibrium distribution function.

The 501id curves on this figure have the degree of ioniza-
tion caleculated .according to the ‘Saha equation. They indi-~
cate that for the cases considered the simpler Oy . provides
satisfactory values for ‘the conductivity provided that the

39
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electron temperature is known. As expucted at weak and strong
field strengths, when P2 is Maxwellian, UM/G - 1. The
greatest deviation between ¢ and oy ocours between these
1imits when fo differs significantly from ?0 . For the
A-K system 1t was found that o = Oy &8 expected from the
remarks in Section V-A.
D. Electron Temperature

The electron temperature T found by the use of the
nonequilibrium distribution function (42) in (6) was compared
to an approximate electron temperature TeM found by the use

of an energy balance with 0 assumed to be Maxwellian at
the electron temperature. Results of this compariscn are
illustrated in Fig. 9. As was the case in Fig. 8, the dotted

curves here represent the maximum departure of Te from Te .
M

It should be noted that the relatively small differences
between Te and Te shown here for the solid curves cor-

respond to large differences in electron density.

E. Comparison with Experiment

Under the conditions of the experiments of Refs. 6 and 7,
X >> 5 , and hence if only elastic¢ encounters are considered,
we would expect the distribution function to be Eo . Numer-
ical calculations were performed which verified that the dis-
tribution function was in fact Maxwelllan during all the con-
ditions of these experiments. The evolution of fo for some
typical experimental conditions is shown qualitatively in
Filg. 2 by curves IV and V. Figure 10 illustrates a typical
comparison between experiment, the conductivity based on
Frost's theory [Eq. (38)] (shown by Ref. 13 to be preferable
to the mean-free-path conductivity used by Ref. 7), and the
conductivity as calculated by Cool and Zukoski. Here we see
no significant disagreement between the theories and good
agreement between theories and experlment for the higher
current densities, Similar results have been recently reported
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by Lymanle. Inclusion of radiation loss terms in the Maxwellian
energy balance has resulted in much better agreement in the
region where the elastic theory does not agree well with the -
experimental results ’7. Although a similar behavior can be
qualitatively deduced from-the nonelastic aspects of our analy-
s1s, detalled calculations are beyond the scope of our present
obJectives.

LY

APPENDIX A
- - DEVELOPMENT OF KINETIC EQUATIONS (2) and (3)

In this sec;ion we derive the kinetic equations which
are fundamental to the previous analysils.

I. Collislon Integrals ]

In Eq. (1) we use the familiar Boltzmann collision operator
to represent the elastlc electron-neutral and electron-ion en-
counters and the Fokker-Planck collision operator for the elec-
tron-electron interactions. These terms are dlscussed in
4,5 and will merely be described briefly

several references2?
here.
Electron-neutral:
A typical electron-neutral céllision term is described
by the Boltzmann binary collision integral as

£

(-gfg)n = I[(fﬁfé - fnre)gnon(gn’x)dnd:ivn °
The primed quantities denote dependency on “after-collision”
velocities. The quantity un(gn,x)do denotes the differential
cross section for the elastlic encounter between electrons and
neutrals of relative speed g, = l? - V;} such that the
relative velocity (or the electron) will be deflected through:
the angle ¥x , into the differential solid angle d2 , in
the center-of-mass frame.’

Electron-ion:

Here as in Ref. 2 we neglect'collective plasma oscilla-
tions and consider only those Coulomble interactions which are -
characterized best by random two-boedy encouriters. These en-
counters can be described by elther the Fokker-Planck equa-
tion or Boltzmann binary collisioh operator5. 4For convenlience
we choose the latter and write

a1 )
etey _ N . 3
(3g)y = Jlrieg - £35. )80, (g x) a0y,
The notallon here 1s consistent with that used in the previous

b5



electron-neutral collision integral. oi(gi,x) is the
Rutherford cross section for a Coulombic interaction.

In evaluating this collislion integral, we will make use
of the Debye shielding length to "cut off" the divergent inte-
grals assoclated with the Coulombic potentiallg’zo. This cut-
éff procedure is valid whenever the number of particles in a
Pebye sphere 1is very much greater than unity; that is, when
nk 1is large.

Electron-electron: .

Here, as in the previous Coulombic interaction, we also
‘have a choice of collision operators. We follow the standard
procedure and use the Fokker-Planck equation to account for
the electron-electiron Coulombic encounters. Written In terms
of the now familiar Rosenbluth potentials, this collision
operator in Carteslan tensor notation 1is

a f -7, k4 -, -,
(569 = - 3z 10D B + 50 - (D) o 5oz 6D,

where jd
£ (v,)

- e*'f 3
H(V) 2Pee f —g—-—- d‘ Vf

WV) =T, [ £, (Vp)edv,
In the potential functions H and G ,
;k is the velocity of the fileld electron,
g = IV - ;kf is the relative speed between the test
4 and field electrons, and

ce = Yor §§ InR where e =. electron charge, and. A
m is the ratio of the Debye length to the
average impact parameter for a 90°
Coulomb deflection.

Here in writing Fee in terms of £nk use was‘made of the
Debye cut~off to evaluate the Coulombic scattering cross
section and the resulting logarithm was treated as a constant
evaluated at the mean value of the electron velocitygl.
Dreicer2 presents some useful relationships between H, G,
and fe .
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In treating the nonelastlec collisions below, we will
follow the development presenled by Fowler22 but allow for
thermal motion of the neutrals and work in velocity rather
than energy variables. :

A. Inelastic and Superelasgtic Collisions
We investigate the conservation of electrons in the

set V;d3v ‘as a result of inelastlc and superelastic encounters
resulting in neutrals undergoing excitation and de-excitation
reactions respectively. A typical interaction can be repre-
sented by - ’
J 2 k : .
e + (Atom)n “e + (Atom)n (A-1)

where the subscript n stands for the type of neutral atom
and the superscripts J and k (k > J) ccrrespond to the
state of the neutral particle.

The energy equation for this type of encoﬁnter can be
distinguished by whether the reaction is caused by or results
in an electron in the set. When an excitation (J = k) 1is
caused by an electron with velocity V the energy equation
is .

2 2

2
meV + m Vv —mVo+mV

an, ™ e 2 4o . (4-2)

m My Jk

Here 70 is the electron veloeity after the collision, ?5
and VA are the velocities of the neutral before and after
the encounter, respectively (the subscripts J and k serve
the dual role of distinguishing between the neutral before and
after collision and representing its state), and .AanE hv“jk
is the excitation energy for . the interaction. When an exéita—
tion results in an electron being added to the set, the enefgy
equation is A ’ ’ .

'mevf + 'mnv:j = mev? + mnvﬁk + 2Aan (A-3)
where ?i is the velocity of the electron before the inelastic
collision. The inverse {superelastic) encounters which also )
contribute to the number of electrons in the set are described
energetically by (A-2) and (A-3).
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The number of electrons lest to the.set ?,d3v in untt oz plane of the particles after the encounter differing from the
time per unlt velumeras a resnlt of Inelastile collistons;w%th:_:;;i~< A  plane of the particles prior to Lhe encounter. . E
"neutrals of velocity range v ,d3v “such that the neutrals=——=..o% - ) From quartum mechanical considerations the uncertainty
are placed in the set v ,d3v ‘and the. electrons are. ScatsmomFmraow . principle precludes knowledge of the precise position ‘and
k k velocity of a particle simultaneously. Thus, the exact value

. 5 ed relative: tol. ormen Lommhe.
tered through an -angle Xo M'dQOCM“° measur of thé impact parameter, the total angular momentum vector for
the system, or the plane of the particles 1is unknown for tﬁe

7 - ?; in the center-of-mass frame,.with the veloclty ?656%36

is J v " collision described by (A-4). If no strong external magnetic
f'd3vfn-a3v g, dﬁ‘(g",xd Dyaa . (a-4) fields exist, the direction of the total orbital angular momen-
o I A "y e o tum vector of the heavy particles is expected to be arbitrary.
We represent this type of transition with the following notas==z=.t o . We 1limit our interest to the magnitude of this vector only.
tion: Then by symmetry arguments we can neglect the azimuthal depen~
[ﬁZV’J - T ,? ] . dence of the orientation of the relative velocity vector after

the collision §bn with respect to ,Eh . Thus we only need
" ;

In the previous inelastic loss expressinn a (g 2Xg )dﬂo - :
"3 " Vem CM to specify the angle X, between Eb and g to describe
is the differential scattering cross sectlon for the excitation. . oM . Dy
collision in question. The relative velocity g, 1s defined adequately our lnelastic .collisions. -
by _ 3 This argument can also be lllustrated by considering the
g = IV R ? | s interaction between two monoenergetic streams, one of which is
ny ny taken to be the set of electrons having the velocity range
£, E.fn(?; ) 1is the veloclty distribution function for the V,a3v ; the other stream is of neutrals in the set ;; ,d3vn .
1 . ) ) . . J
state n neutral in the state J normalized on the number As a result of the averaging effects of the streams we expect
density for thls state. K the sum of the total angular momentum vectors. of the heavy
In writing g, . and XOCM as arguments of o , We have particles to be zero. This initial symmetry would be preserved
addressed ourselves to an examination of excitatlon collisions after the encounter allowing us to neglect the azimuthal depen-
- Y 3
which cause heavy particle state changes that can be classi- dence of gOn relative to sn » Thus, we only need to pre-
fied by the principal and total arigular momentum quantum numbers sent the single deflection angle XO as a parameter of the
should have enough informa- cM . ) .
and degeneracles. The cross section sh & : collision. Knowing XO and using symmetry considerations
tion specified in its arguments to determine, along with the : )
conservation equations, the velocities of both particles in one can find the velocity of the particles after the collision
the appropriate reference frame after the collision. When con- in the center-of-mass reference frame. _
sidering the dynamics of inelastic collisions in the center- These same arguments also apply for the other inelastlc
of-mass coordinates, changes in the component contributions to (superelastic) collisions discussed in this Daperé
: C i
the angular momentum vector of the system will result in the The number of electrons lost to the set v,d”v in unit

time ver unlit volume as a result of superelastic collisions
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- -
described by {?,Vnk - vl,an] is
3 3 S (a-5)
v £ dv I (g X .
re oo nk 0,y 4 l CM
Here cg (gn 3X1 )dO1CM is the differential cross section

for this superelastic encounter. The number of electrons lost
to the set per unit time per unit volume 1s then the sum of
(A-4) and (A-5).

‘Similarly, the number of electrons gained by the set per
unit volume per unit time as a result of the lnverse encounters

- - = e
represented [70,?n - ?,vn ] and [vl,vnJ - vl,vnk] is
k

d £ d’v [} X
Feol Vorny & Vn Bon, “k( Bon, " Xogy’ “ogy (A-6)

and
Sv,e, & a (8-7)
£ da v, f_ a’v o (g X1 ) .
e 1 nJ njglnj nJ lnj’ 1CM lCM
Expression (A-6) is the (superelastic) inverse of (A-%). Ex-
pression (A-7) represents the inverse of (A- 5) Typically the

relative velocity gOnk is defined by gOn v Vo - vnk[ .

Applying the principle of detalled balancing, we"equate
(A-%) and 1ts inverse (A-6) at equilibrium and obtain

k 3,63

£ f 1. g o (g ,x, )&vdv, =

( e ny Eq nyng nJ’ Ocm HJ
J 3, g3
[feofnk]Eq gOnkcnk(gOnk’XO )d VOd v
(a-8)
The equilibrium distribution functiogs are glven below:

m, Vv

( >/2 T KT

[fe)gg = [Meley(mmgT .

my Vg

e
m, 3/2 - s
[feo]Eq = [ng lgo(zaep)
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3/2 mnv2

mn - nje
[fnk]Eq = [nnk]Eq (zrer) & TERT
2
Cm 3/2 _ My Vn
i J]Eq - [nnJ]Eq (2W§T) € e (A-9)

where T 1s the equilibrium temperature. At equilibrium
we have Te = Th = T. The relative populations of various
excited levels of an atom at equilibrium are given by the
Boltzmann distribution '

n“k @ -A.ndk/kT

T =% e (A-lO)
Bylpq J

where @ and mj are the atomlc degeneracles assoclated
with the states .J and k of the neutral particles. The

differential velocity elements in (A-8) can be related via
their Jacobian as

3, 43 o) 3 3

d°v_ d v, = | 1 d°v_ d v . (A-11)

nk 0 B, nJ
J

Then the combination of (A-9), (A-10), (A-11), and (A-2) with

(A-B) yields the following detailed balancing result:

2 .m,ij
85, 00 (8a, sXe ) =
Onk n, Onk? OCM .

(g :XO ) . (A—l.?)
(I R I T O

A similar detailed balancing analysis with {A-5) and (A-7)
yields
2 2
gn ;,jl (g ’Xl ) = J gln l’l (gln ’Xl ) (A'l3)
k J J
The differential velocity elements for this encounter are
related by

g,
" a3 3 3 3
a7vy @V == (a7, vy . (A-14

Ny (gln) ny )

If the electron velocities before a superelastic and
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an inelastic encounter are denoted by ?S and’ ? respec-
tively, 1t 1s easy to show that Egs. (A~12) and (4-13), re-
lating the differential cross sections, can both be written
as the following general detailed balancing result:

2 3 I -
gSnkon(gSnk’xCM) - Ei gInJGnJ(SInJ’XCM) * (4-15)

In (A-15). gg,. . .and g, _ are defined as
SEREAR S (A Inj-.i A

b= -
ggn, = IVs = ¥y | 5 and
g = 1% - % | -

J 3

The veloclity elements in this general notatlon are related
oy
3, g3, Sy 3 3 '
@’v, a'vg = = a’v, a’vy . (a-16)
o Inj J
Equations (A-11, 12, 13, and 14) can be combined with
(A-4, 5, 6, and T) to yield an expression for the net number
of electrons gained by the set ?,d3v by the reactilons
nk] .
When this resulting expression is then integrated over all
possible Scattering angles and heavy particle velocities, we
obtain the following expression for the net gain of electrons
to the set per unit volume per unit time for the reaction
given by (A-1):

represented by [?O,V eV,Y. 1 ana [V,,¥. 7,7
Dy n 1’'n

o_f A w .
(FeDme 4O = &[1se, 2, 5t 8, )an, o3

)g, of (g
J(—)k nd I’XJ n

s X d
3 177 %n " O%m

€, .
. k J 3y
+ff{s, £ L -rr Vg of (g, ,x, )4, d>v_ 1.
ey nJmJ e ny, gnk n, nk’ 10M ICM n,
v _ (a-17)
On summing over the various states of the neutral species and

dividing by d3v we obtain
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v

o_f w
('%EE)EX =2z ff(fe Ty a Teln )gn oﬁ (gn 'XQ )dﬂo_ a>v
L OUIEx il %0 WPk € Ryt Ry % Pom

3
% ve ol 3
+ff(e £ £ - f ol (g , )dﬂ'dv].
I1fe, nyw, e nk)gnk My By Xy’ Tloy g |
(A-18)

In this equation the first collision operator .represents the
superelastic gain and the inelastlc loss to the electron set
7,d3v for all possible values of J and k. The second '

‘¢ollision operator represents the inelastic gain and the

superelastic loss to this set for all possible values of ]
and k . -

B. Ionization and Three-Body Recombination Encouters
In this subsection we develop collision integrals
for the conservation of electrons in the set 7,d3v during
collisional ionization and three-body recombination encounters.

A typical reaction in this case can be represented by
Y

e+ (atom)d P e + e+ (Ton)f . (A-19)
Here, as previously, the subscript n corresponds to the
type of neutral atom, the superscripts J and £ signify
the state of the neutral atom and its related lon respectively.
The energy equations for this type of encounter, when we
concern ourselves with how we enter or leave the set 7,d3v B

become:
mev2 + mnviJ = mevg + mevi + minvinz + 2AnJ£. (4-20)
for the case where the ionization is caused by a V¥ electron
and ’ ’
mevi + mnvij= mev2 + mevg + minvfnz + 2AnJ£ (A-21)

when the lonization results in-an electron in the set. In’

these energy equations my and 71 are the mass and velocity
n né
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respectively of the lonized type n neutral atom in the
state distinguished by the subscript £ and Anjl is the
ionization potential of the atom from 1ts  Jth state of
excitation to its related ion in the £th state. In (A-20)
Vé and ?4 are the velocities of the two electrons resultigg
from the ionization. Making use of the principle of indis-
tinguishability22 we will not distingulsh between bound and
uhboundvelectrons during an lonization or three-body recom-
bination encounter. Thus, we do.not specify which electron
after the ionization corresponded to the ionizing electron;

we merely state that two electrons result from the ionization.
Likewise in considering a recombination encounter, no attempt
is made tc identify which of the twe free electrons beccmes
poond and which remains free. Similarly, in {A-21) we have
the case where a ?1 electron caused an ionization which
resulted in two electrons, one with velocity v and the
other with velocity ?3 . It should be ngted that the Vi
appearing in this subsection is not the vy that appears in
subsection & of this Appendix. They are distinguished by the
type interacticns being considered.

The number of electrons lost to the set ?,d3v in unit
time per unit volume as a result of ionizaticn encounters
with neutrals, such that the follecwing transition occurs

V., - Vo ysvy ]
is

1
3 3 _nf
fed anjd v, B

3
o (g 3 . v Ya v an . (a-22)
3 “j njion s Xo 42 42 M 2CM

“cM CM c

i i .
nt 7 3 aifferential
Here- © . H Vyo. )a@°V as, is the erentia
njlon(gnJ XECM’ 420M . 42CM ECM

Yepross section™ “or an ionization encounter between electrons

-
in the set ?,d3v and neutrals in the osetl vn‘,dsvn re-

J g
sulting in two electrons, their velocitivu glven by v2,d3V2

and V),dv, , and an fon in the state & with 1ts velocity
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-‘-; .
. g’ tap
is measured relative to the direction of g, in the center-

range and state signified by ,d3vi + The angle Xo
CM

of-mass frame. The velocity Vﬁe 1s defined by [v) ,fue' 1,
CM CM cM

where fugCM is the direction of 74 measured relative to
Vé in the center-of-mass frame. )

We have agailn used quantum mechanical and symmetry argu-
ments to arrive at the above form of the cross section. As
presented, we have specified sufficient information to be able
to determine the velocities of the particles after the encounter
when symmetry considerations are included with the conservation
equations and the initlal velocities. There is no single "cor-
rect" way to designate a differential cross section of this com-
plexity. For example, let us examine qualitatively for a moment
the dynamics of an ionlzing collision as regards'a cholce of
parameters for the cross sectlon. Conslder the interaction of
a monoenergetic beam of electrons with a monoenergetic beam of
neutrals which results in ionization of the neutrals. Before
the ionization encounter between an electron and a neutral par-
ticle, the two particies lie in a single plane in their center-
of-mass reference frame. After the encounter, however, the
resulting three particles are not restricted to move in a
stngle plane in this reference frame. By averaging all such
encounters in the beams we can still expect a symmetry of sorts
about the relative velocity vector En- « That 1s, the resul-
tant momentum vector of any two of thejscattered particles
(say the electrons) from a single collision can be found equally
likely in any azimuth about Eh as wiil the momentum vector
of the third particle. These Jmomentum vectors, that of the
above resultant and that of the third particle, are equal,
antiparallel, and lie in a plane which has the same syhmetry
about gn_ as did the particles in Section A, Appendix
A, after gn excitation collision, Thils symmetry can
be represented here by allowing any of the three velocity
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vectors to be arbltrarily lo»ated in an axial sense with
respect to g . We choose v2 - to have t¥is symmetric

n# , ’
n.ion® The col-

character and %hus only specifyCMXE,M in ©
1ision is then completely described by specifying the veloclty
of one of the remaining particles relative to ?2 . We
plcked V) for this distinction. It is important to note

the arbitrariness of these cholces. Thus some other choice

of parameters could have been made. It may appear from the
above choice that the "created" electron must have the velo-
city Vu . This is not the case. Consistent with the prin-
ciple of indistingulshabllity we have merely stated the velo-
city of one of the resulting particles without specifying
which particle 1t was prior to the encounter.

The number of electrons lost to the set v d3 in unit
time per unit volume as a result of three-body recombination
encounters wilth lons and other electrons such that the
[?,Vé,?i - ?I,G; ] transition oceurs is

ni 3
n
radve, vy o @

J 2 .
g, & o (g, 8 X X
1 1 €3 3 inE 3inl 3in£rec inﬁ 3in£’ gBECM’ lCM

. ni nk

. a0 V1 - (A-23)

1 1+ Gvé’

CM

The relative veloclitles are defilned as
- -
g, =1lv-¥, | ana g
1 . 1ne 3ine

n

nt

n
J vd « n

0,9 (g, 8 X iX, )4 is the "differential

31 grect™i, 0 ° 31 8skey oM lom

cross section” for this recombination collision. After this

encounter ‘the remaining free electron is scattered into the

angle xch dﬂch measured relative to vbm . The angle
between 531 and gi z is glven by zé'gCM . Again, the

cholee of argument for the recombination cross section is
not unique, and also we do not specify which of the two free
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electrons becomes bound. The delta function 6? v

_in (A-23) to account for the case when both elec%rons partici-
pating in the recombination encounter are in the set v d3v .
This function is defined as follows:

0; vV, AV
62 = o3
V3,V e

Thus, for any. smooth finite function K(v we find

JR(T) 5y yadvg =0

3)

In an analogous manner, the number of electrons gained by

is included

the set per unit volume per unit time as a result of the inverse

recombination [?é,?u,vi - 7,7; ] and ionization [7&,7 -
nt J 3

- - =
,v3,v1 E] Interactions are respectively
n

3 3 3
f_ad7v,f drv,f a-’v g g
ey 2 ey 401 1n£ zinz RinE

)ag

n .
J ( bvd
-0 g 8 oX $Xo ) » (A-2k)
2k grec”S21y p* =4 0 8800 2eM 2oM

and
1

re1a3v1fnjd3vnjglnjclgjion(glnj,xch,GélCM)dQlCMd3v31 {1+b»
(a-25).
As a result of the collisions belng linverses, the scattering
angles in (A-24) and (A-25) are the same as those for the
direct collision and are labeled accordingly._ Note that the
angles are measured relative to velocity sets and not relative
to particular particles.’ The delta function in (A—QS) is to
account for the possibility of the ionization resulting in two
electrons entering the set.
Applying the principle of detailed balancing we equate
{A-22) and its inverse (A-214) at equilibrium and obtain
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i

4
fr.f 1 g, 0,"
e nJ Eq nJ njion

a3 aBvadv = (A-26)

v
420y ;

n
[£. £ £, lo &: By Ood adv,adv,adv, .
ey ey ) EqQ’ Einz uinl 241nzrec 2 4 inl
At equilibrium the distributicn functions are Maxwelllan:
8,32 _gv?
[£,0g = [nglgg(®)™ e

[feQ]Eq - [fe]Eq e-B(Vg - V?)
(7, Jrg = [fe!] ST
e e _ g
m ~3/2 2kT,,
[fnj]Eq = [nnk]Eq(ETETh
” m, 3/2 e-minvin/ekfrh .

inzlEq = [n1h£3aq(§?i%g

(a-27)
The number densities of the lons, the neutrals and the elec-
trons are related at equilibrium via the Saha equation which

can be written as
-A /T

n, n 3 s
Ttagel M m3/2 20 Thyytm
n - h3 B wj :
J-Baq
(a-28)
In (A-28) ©, and w, are the degeneracies Cfor

the type n atom in its Jth excitation level and 1ts related
ion in the fth excitation level. In Egs. (A-27) and (A-28) we
have set T, = T, at equilibrium. Combining (A-20), (A-27)
and {A-28) with (A-26) we obtaln the fellowing detailed balancing
results
g 3y a3v. &3
g g o d-’v v v =
214 Minz 24inzrec 2 4 14
i

o] N
n,ion

J

d3

3,43
N vugcmd vd VnJ (A-29)

J
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where

A similar detailed balancing analysis wlth (A-23) and
(A-25) yilelds )
n
J 3vady g3
g 24 o a‘va'v,d’v =
inl 31n£ 3inzrec' 3 inl .
i
nt 3
Hgln Oln iond v

Cun, 3lCMd3vld3vnj . (a-30)

As was the case for lnelastic and superélastié encounters,
(A-29) and (A-30) can both be included in a single expression.
If we let subscript Z denote the electron causing the loniza-~
tion and subscripts R and B denote the electrons resulting
from thc ionizatlon, we can, consistent with previous notation,
include Eqs. (A-29) and {A-30) in the following equation:

n .
gRinnginchginzrecd3VRd3VBd3vinz =
ainl
J‘anion
Since the following relations between the differential velocity
elements hold:s

Hg, av d3vzd3vnj . (A-31)

BRCM

3. g3v a3 3n g3 3
a‘v,d-vd v = d’G a’g d-g.
R 'B inl Rin£ Binﬂ
and .
“a3y g3 _ a3a g3
d vzd Vh, = a°’G d an
. J . J ] )
where @ 1s the velocity of the center of mass, (A-31) can be

written as
n

J 3 3 .
g g o a-g d’g =
Ri 7 Binﬂ RBinzrec Ring Binﬂ =

1 .
nb 3 .33
HanJGZnJiond VBR gy Ezny * (a-32)
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Equations (A-29) and (A-30) can be combined with (A-22,
23, 24, and 25) to yield an expression for the net number of
electrons galned by'the set v d3& as a result of 1nteractions
represented by [?,7; © ?21V4: 1 ] and [v,v3,vi o vl,vn ].
This resulting expression can then be integrated over all pos-
sible scattering angles and heavy particle velocities to obtain

e e 3¢ = &3 : _ nd a0 @S¢
( 5# )§2$ dv =d V{”f(fegfeufinzH fefnj)gnjoejiond 20Md Vuecm
a3y o+ fffle, £ Hlr g ey &
nJ ey nJ e i z 3 1 ni 31
¥ 3383 (-33)
'031nxre°dalcmd v3d vinﬂg .

This equation represents the net galn of electrons to the set

per unit volume per unit time for the reaction given by (A-19).
Now, on summing over the relevant excited states of the

neutral species and its lon and dividing by d3v, we obtailn

the rollowing collision integral for the net gain of electrons

to the set per unit volume of phase space per unit time as a

result of collisional ionization and three-body recombination

encounters:
(Eggg)lon =Z?j{f{f(re feufinzH'fefnj)gnjoigfondg2cmd3v4acmd3vnj
+ fff(felfnJH_l'refinzfeB)ginzg31nkcginzreedﬂlcm
.d3v3d3vin£§ . (A-34)

Here the first collislon integral represents the gain by three-

body recombination and the loss by ionization to the set v d3 H

the second collision integral represents the gain by ionlization
and the loss by three-body recombination to the set.
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C. Photoionization and Two-Body Recombinatlion Encounters
- -~ - - The remaining nonelastic collision term is that associ-
ated with photoionization. Physically, a photon of energy hVZJ
is absorbed by an atom in the state J resulting in an ion
in the state £ and a free electron. The reverse reaction is
when a free electron and an ion combine with the emission of
radiation. A typical reaction for this case can be represented
by . . .

e + (Ion)z e (Atom)J + photon . (A-35)
In terms of the relative velocity 31 " the energy
equation for this encounter 1is

1 2
vy = ?Linsinﬂ + An” » (A-36)

where iy is the reduced mass defined by mm, /(me+m1 ) .

We consiger only nonrelativlistic electrons in thils analysis

and neglect the momentum of the photons relative to the momen-
tum of the electrons or the heavy particles. Then in the center-
of-mass reference frame the dlrect encounter. (photolonization)
wlll result in an electron and an ion moving in an antiparallel
direction arbitrarily oriented relative to the direction of’

the incoming photon. Angular momentum considerations can be
used to spatially orient these resulting partlcles relative to
the initial total orbital angular momentum vector of the neutral
particle for a particular collision. If we consider the inter-
action between & monoenergetic photon beam and a cloud of
neutrals in the state J 1in the center-of-mass frame which

are not polarized by an external magﬁetic field, then we can
conclude by symmetry arguments that the colllsion probabilities
will be independent of the "scattering" angle of the recoiling
particles., Thus, in any direct collision vy would be the
only parameter needed, in additlion to the conservation equa-
tions, to determine the velocitiles of the resuléing ion and
electron in a particular direction.
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1
et ¥ nz(vzj)f(vzj)dvzjdﬂ be the probability that a
neutral atom in state J and set v d3vn will in unit time,

under the influence of vzj-radiation of igtensity I(sz)dvlj R
become ionized by absorption of a-quantum of energy l’wz‘j and
emit an electron into the angle ag, oM with speed v, dv 3 the
resulting ion will be in the state £ with velocity vi ,d3v1 .
The solid angle associated with the ion motlon will be nl ni
-dQ., in the center-of-mass frame. I(sz) is the specific
intensity of - sz—radiation integrated over all solld angles;
it is equal to the product of the radiant energy density at
this frequency p(v‘eJ and the speed of light c¢ . The number
of electrons gained by the set v,d3v per unit time per unit
volume as a result of photolonlzation can then be represented
e 3 ing
fnjd vnjwn3 (sz)I(VEJ)dVEJdﬂcm . (A-37)
Two-body recombination, the inverse of the above encounter,
results in a depletion Gf electrons from the set. An examina-
tion of the dynamical equations in the center-of-mass frame
will reveal that the only parameter needed to determlne the
frequency of the Eadiant energy 1s the relative speed 8y .
Then, defining Pi (gi )} as the differential cross secgz
tion for radiativenéaptuﬁe (two-body recombination) of an elec-

tron in the velocity range 3,d3v' by an ion in the set

?1 ,d3vi which results in the emission of a quantum of
-
ragiation hvlj and a neutral atom in the set Vg ,d3vn N

we can write an expression for the number of electrons lost
by radiative capture for the reaction represented by (A—35)
as o
fed3vf1 adv (A-38)

né
Elﬁctron captures are both spontaneous and stimulated.

Thus B, can be written as
inl

5 J
g, B.< (g ).
Theing 1he tne
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Pnj ( ) = ny ( )+ 1 ny
= Y + ‘ -
tne ginﬂ e Sinz, vgj)ﬂinl<sinz) (4-39)

where the first term on the right-hand side is the contribution
from spontaneous capture and the remaining term is thelcontri—'
bution from induced capture.

Applying the principle of detailed balancing we can egquate
(A-37) and (A-~38) at equilibrium. Utilizing (A-39) with this
‘equality we obtaln ’

[fefinzlgq 8y iuﬂai +[I(VEJ)]E Bi } d3vd3v1n‘c =

i ' '
nt : .
[rnJ]Eq wnJ (v”)[I(v”)]Eqd3andv”dncM .

(A-40)
At equilibrium the distribution functions are Maxwelllan and
‘are given by (A-27). The equilibrium specific radiation inten-
sity, given below, is Planck's black body intensity:
3
BTrthJ

[2(vy5) Tgg = —5 ¢ hv“}ﬁ;1 ) . (a-b1)
e -1

The Saha equation (A-28) relates the number densities in (A-10)
Combining (A-27), (A-28), and (A-41) with (A-40), we obtain

-1 n, ~hv, /KL’ hv3 -hv,,/
H gy [aij (1-e 2 h) ﬁ )e %3 K;bnj 1a3vady
nf “ni e inl 1

3

nt

Since this equation must be independent of the temperature
the following relations must hold:
3

G:ig(ginz)‘= f;f_i.siJ (&, z) , and (A-43)
wi“l(vzj)dncmdvl.d3v - ple? g ad (g ya3vadv
3 e P Hng Bing the "
(A-43)
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the right hand side of {(A-48) is related to 43 vy Bq. {A-36).
Equations {A-43) and (A-48) are the detailed balancins relations
for this photelonization encounter.

The differentlal elements in {A~44) can be related through
the Jacoblan of the- fullowing transformation:

an, dv“d v, Lﬂd3vd3 o { A-45)
i When these detailed balance expressions are introduced
: i -
To evaluate Lﬂ we make use of therfollowlng differential ti;r;tolthe gain ex;;res? Aon9§ A:';)tand th: resulz combinii withﬁ, st
relationship which holds far our photoiohizing models 1 © oslss e;::ress onbt ;3 " hen .1n egrate over ® poss 1e
] d3vd3v ~ d331 dsv ’. on veloclties we obtain n‘1 .

( e e) d v = d~V f[f H-l 11’12 - f £ ]g P J d3 L;:;‘ .

When this relation is combined witir (ﬁ—%i the result can be' 3t ’Ph By n & lng ing ing 1n£ ce

~yord

reduced to iht
agavys ~ l7ledg; . (A-46) . (A-49)
3 _a nk ; This equation represents the net galn of electrons to the: - T
Since d sj_n £= 51n ldgin EdQCM » we caw write (A-16) as set V,d3v per unit volume per unit time for the reaction
2 represented by (A-35). On summing over all possible states
' de = Lﬂg;zn zdgin ¢ we obtain the following c(;l&ision integral for photoionization.
i ﬂ:L n
so that sl o 1 g_"_li - (—a—)ph =2 £ JH - . an - ey Z]gingpiizd3vin , - (50
5? ginl ng
ni .
Then using (A-36) we can find the following. relationship ‘
v iy 8y II. The Lorentz Approximation
.aé_@— = ._Lh..f.lé . In a uniform applied fleld the distribution function r
1.2 will exhibit azimuthal symmetry about B . We take advantage
Thus the Jacoblan becomes of this symmetry and employ the truncated expansion of f in
{ J‘ - in azimuthally symmetric spherigaé garmonics s Otherwlse known
. hginz as the Lorentz approximation™’ 3 That is, we assume
and (A4-45) can then be written as reﬁ',t) can be accurately represented by
an, dv“d v, = h—gin— aSvadv, . © (A-47) £.(V,8) = £(p,v,t) = Zf'“(v t)P (b)) v, t) + ufl(’v,t)
ERECW n © (a-51)
With (A-lﬂ) ‘and the definition of H , Bg. (A-lu,t)- can be re-~ where the P are Legendre polynomials and .y 1s the coslne
Yuced to 2 of the angle between v and the direction of the electric’
winz(v ) = { 20 z )( )a J (g ) (A-18) field. The Lorentz approximation 1s valid for small deviations
n £3 3 3 m 2 i 1 from spherical symmetry, in which.case ﬁ1<< fo and the’
remaining terms in the expansion are negligi‘ble.
where we have replaced Hy by my The variable 24 on .

ni
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A. Application to Equation (1)

Working with spherical coordinates, we combine (A-51)
with the terms in Eq. (l), utilize the simplifications consis-
tent with the small electron mass and the orthogonality proper-
ty of Legendre polynomials, and obtain as a result the follow-
ing coupled equations for fo and fl :

4 0
ot L1 2 2.1 v'8& ;1 3f 0
31;—“'23"\:{%"1" 'ETE(WW‘“N')

(o]
o,v 0O O,v - 0,» o f
o 320 7 ) e
-1 - I +I = (3¢ s
0,0 3 ov ( 2,0 -1,v t 'NE (A—52)
ol 1
art ar° vel %t aef
EIE e a0 (A-53)

The first two terms in both these equations are the direct
result of applying the Lorentz approximation to the left-hand
side of {1). The second term in the brackets in (A-52) results
from the isotropic part of the elastic electron-heavy particle
(ion and neutral) collision termsu’B. 5 , an effective mass
ratio, is defined as follows: '

5n Bi *
oS- = )\E[ b ~ + 3 ""‘} s (A°54)
n n i 1
2me 2me
where Gn = s 51 = o and AE , the mean free path
n i

for elastic momentum transfer between electrons and heavy
specles, 1s defined by
=2 >+ 53 (A-55)
i

)\E n n AT

i,
The mean free paths for momentum transfer between the elec-

trons and the neutral and ion specles, kn and %i respec-
tively, are given by

%; =n [ (l—cosx)cn(x,gn)dﬂ R {A-56)

*As defined, & is nearly independent of velocity.
66

and
%; =ny 2nb§ n [1+ (;%)2] {a-57)
where ]
kT, 1/2
Ay = (—5) is the Debye length,
Yrn e

Te 1s the electron temperature,

2
bo = ( € 2) is the impact parameter for a 90° Coulomb
pyv deflection,

m.m
e 1

il

By E;?EI 1s the reduced mass.

q,V .
The terms containing Ip v2 correspond to the 1sotropic
E

1 .
part of the electron-electron 1teractions5. Ip’v2 is defined
. »
by 1
v
q,V LLsy 2
258 ;7 p2HP4y (a-58)
b,Vy P b
1 .

On the right-hand side of (A-52) is the contribution
from all the nonelastic collisions. This term will be treated
in some detail later in Section II,B of this appendix.

The first term on the right-hand side of (A-53) repre-
sents the anisotropic collisional contributions to the kinetic
equatlion as a result of elastic electron-heavy particle en-
counters?. The second term on the right-hand side of (A-53)
is the anisotropic contribution of the electron-electron
interactions. Written out explicitly, it 185

1
orf (0] i,v 1,0 1,v
. 0.1 . 1 af? , . % s s
(-5, = 8l 08t + 2 -3T  + 2T + 5I
tie ee 15v2 &V 3,0 -2,v 1,0
2,0 1,v l,e . 2.1 0,v O,»
T e A)+§—Vdf1 +I
av 3,0 -2,v av® 2,0  =1,v
. 1 .1 O,y 0,v 0,0
+ (@ _E;r T -1 w2r ] ) . (A-59)
2 ‘dv v
3v 0,0 2,0 -1,v
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The remaining term in (A~ 53) represents the anlgotropic
contribution to Eq. (1) as a result of all nonelastilc colli-

sions. This term, along with (5 f /Bt)NE , will be developed
below.

B. Application to Nonelastie Colligion Integrals

It follows from the substitution of (A-11) into
Eq. (1) and the subsequent operations which led to Egs. (A-52)
and (A-53) that the nonelastlc terms in-thls latter set of
‘equations can be written as
3,1° 310 3 10 3 1°
("a_)NE z (Se)mx * z (-5%)1on * 2 (—5g)pn (A-60)

d
=;E st 1 > £l > £t

£
e e e e Aa-6
(e )ng = z (St e * 2 (St zon * z (5g)pn - (2-61)
In this section we will illustrate how the ferms on the

right-hand sides of (A-60) and (A-61) can be reduced to obtain
fO

(Ste = (et 3 (a-62)
: E
and 3 1t 1
e SR £ (4-63)
St )ve = - N

In (A-62) Fyg Tepresents a galn of electrons to the set
v d3v via nonelastic encounters and the term proportional
teo fo corresponds to a loss from this set. NE and the
effective mean free paths KNE and )NE associated with
nonelastic collisions will be defined in the paragraphs to
follow.
We begin by considering each type of elastic encounter
separatelys
1. Inelastic and Superelastic Collisions
On the substitution of (A-51) into a typilcal
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term in {A-18), for example {A-17), and separating the result
into even and odd powers of u , we find

> 10

© .
(_g_—) = ff(fo £ -0 g oX aa. &3
F bk {rrsg "k Sk ny"8n%n, Togy” Tny
0 D 0. ’ ’
1 ny & ERL T W "nk} (a-64)
" and
1 N
(7,-——eu ) {ff(u uel r ) an. adv
t Ex - 0 a’v
Jok 00 ' wk #n;%ny Sogy” 'ny

1 1 3
+ £ et 3
FL( fn, @, - W fnk)gnkonkdﬂlcmd v“k] .

A-65
Utilizing the small electron mass approximation m /m 'f 0 )
here, we can neglect changes in the heavy particle velocity
during these encounters. Thus in Eqs. (A-64) and (A-65)
differential velocity elements for the heavy particles can
be interchanged. Also, since for the most part the electron
speeds are so much greater than the speed of the heavy parti-
cles, we can to this approximation replace the relative speeds
in these equations by the appropriate electron speeds.

Based on these approximations the following relation-
ships can be shown to exist between the angles which describe
the directlon of the electron motion relative to the direction
of the applied field:

~/ 2
L. =MW . cos ¥ +1/1-u" . sin ¥ co8 €
° .
Ocm %M O%m

By

and

B cos X +\/1-L° sin x, cos ¢ .(A-66
Iow TV Tom Yom )

The sketch below showlng the relative velocities before and
after a colllsion will help clarify these relationships.
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Tnelastic loss: (center-of-mass frame)

I
Onk
X
0 —
By g
) E; in plane of page EAJ normal to page

Superelastic loss: (center-of-mass frame)

gln gln

[
E in plane of page Eh normal to page
. K

Once the small mass approximation has been utilized it
is no longer necessary to differentiate between center-of-
mass and laboratory coordinate frames in regard to electron
motion. Thus, in (A-66) and subsequent equations in this
subsection the CM subscript could be deleted.

When (A-66) and the results of the small mass approxi-
mation are combined with (A-64) and (A-65) and the integration
over the heavy partlcle veloclty is performed, we obtaln

(0] n, n
f n .
(St)ex = (E_IS alr 05— (ﬁ"i o -10%— (a-67)
i n Do In, 0, “y In,
and 1
d.f 1
e -vf
(Sex = -3 (A-68)
jok ik

In Eq. {A-67) the following relations and definitlons hold:
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Hy

Q

it

o
j
Ny

]

E

o] un ?
(0] 0 V.2 Aan
£1 =1 ( Vvt m ) (un = reduced mass)
n

1 k

=n_  [o  d4Q
kInJ ny ny Ocm ’

and

1 = J

En f [+1 aqa .
Mn oy 0o loy

The arguments of the terms fg and fg used here are not the

same as the arguments of similarly labeled terms that will
appear later in connection with collisional ionization and
its inverse. The context in which these distribution functions
are used should serve to differentiate their arguments.

In (A-68) KISJk is the efféctive mean free path for

momentum transfer as a result of inelastic and superelastic
collisionss it is defined by

- (ren)
ISJk In'j Iﬁk ISo ISI
where
w
L0 4 e
S = n J cos ¥, o dQ
XISO 1 ‘'n @ 0 ny Ocm
and
- f% (n ke f cos Y crJ ae. )
s, 1 nydy v ™% lom

On summing (A-67) and (A-68) over the various states
of the neutral species we obtain finally
a Q n

T
(T—) = (—% J 050
‘Ex j,k nnJ mk 0 XI

(___J_ mk O_fO)
ny . nk Ink

.(A-YO)'
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and 3 fl 1 1
e _ . -(A-T1
(S dex = V3 A (a-71)
2 Ik Tk o
2. Ionization and Three-Body Recombination Encounters
Introducing the Lorentz approximation (A-51) for
the electron distribution function into a typical term in (A-34),
say {A-33), and separating the result into even and' odd powers
of ., Wwe obtaln
.0
3L 0.0 0 1ns 3 3
€ = 58, HB-f°f o a9, d°v a°v
(Tt_')gf’? {f”(fe ¥, nJ)gnJ nylon™25, " Va2py

%

0 0 0 ) 3. 43
f H "-ff T a aq a’v.,d v
* fff(f J ins 3)ginﬂg3in£ 31 rec 1CM 3 inJ

and (n-72)
1
Ot 1.0, 0.1 1 )
( gt )§22= {fff[(u2f2f4+“4r2f4)finzH_uf fnJ]gnJGnJiondQQCM

-1 1.0 Ol
-fi E(Hf f3+u3f f3)]

3 3 1
-a d + [fflu £3E, H
Yhae, ™ g JIf Tty n

n
) ginzzg31n1,03inzrecdglcmd3v3d3vinz} - T

In (A-72) we have neglected terms which contain the nroduct

of two anlsotropic parts of the electron distribution function.

This 1s Justified on the basis of fl being very much less

than fo for smallydeviatipns from spherical symmetry.

Now, following the treatment of (A-64) and (A-65), we
introduce the small mass approximation into the above equations
and obtain after integrating over the velocity of the heavy
particles:

3,£° 0.0 Ing 3
(-5t 10n = {ff(f Ty A0 1%)vo, "1 0, vy,
Jol ny J CM CM
+ [f {9 utn £9¢9) vy UnJ dQ d3v>}
1 n'j 1nl 3 3 31n£rec ICM 3

72 (A-74)

_ 1,0, 01y 3y -
- 075“——)Ion = {ff(u2f2f4+u4f2f4}nin H-n, Juf ]vonjiondQE vy

‘and

% Mt 1ns

CM .

JHJ .CM

+ [flu £ 1“ JH 1 (p,flf3+u.3fofl) Jvvg 3inlre°-

C 43
+dQ, a‘vg,} . A-7
o 3} (a-75)

For these encounters, the following angular relationships can

be shown to exist:
Mo = & coS Xg /1~ 2 sin x2 cos €
cM

L cos xu \/ -u sin xn cos ea

By

CM
fy = 1 cos X1 -u sin Xl cos € .
CM .
and o = L cos X A1 142 sin Xq ©€OS € . (A-76)
3 3em 3om 3cm

The By variables on the left-hand side of the above expressions
represent the cosine of the co-latitude angles subtended by

the electron velocities ?r and the electric fileld. The scat-
tering angles are all measured.relative to the velocity v

(tnus, here X3 = Xy_v ). This velocity vector also acts
cM " V3VcM ‘
as the polar axis for the azimuthal angles ‘ep Which are

measured from the plane containing 7V and the electric field.

. When (A-76) 1s combined with (A-75) the cos €, and cos €5

CM CcM

terms will not contribute when the 1ntegration over these azi-

muthal angles 1s performed. The azimuthal orilentation of the
specific angles é3 and €y 1s not important even though
cM . oM :

‘differences between these and other angles appear in the cross

section arguments. Thus, the integration over de3 (d€3=ds3
for small mass approximation) will result in no contribution
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from the cos € term, and since integration over dQ

3em %cm

and dQ is equivalent to an integration over d4Q we
420M h

find the cos €y term also will not contribute when these
CM

integrations are performed.

It should be noted agaln that once the small mass approxi-
mation has been made {here as well as in the previous subsection)
it 1s no longer necessary to continue using the center-of-mass
subscript notation. Nevertheless, in order not to lose sight
of the various coordinate frames we are utilizing we will con-
tinue to use this notation, keeping in mind, however, that in
regard to electron motion the center of mass 1s essentlally at

_rest so that to this approximation electron velocltles can be
regarded as equal in either the laboratory or center-of-mass
reference frames. Thus, in the previous paragraph we were
able to treat de3v as de3 " .

Equations (A-T4) and (A-T5) can now be written in the
following abbreviated form:

a O
O\ v
(—B——o (r, -£9% + (F, -t0)% (8-77)
Ion I R
) ) 34 Ionjﬁ 23 )‘RecgJ
and 1
Bef vfl
(St 10r™ ~ 3 (A-78)
jor By
In (A-77) the following definitions are used:
F1 z(v) ’ max o o ing 2
P L n, H rords % g0, an,, viav
Ton 1 fgf 2047 1on %2 Wuag Ta Ty

where vy = V4 in the small mass approximation

vy = 2'V4_ Z_ 5, n,, from (A-20)
FRZ ] 1 v3max oy 2
=n H™ 9% aQ., do,vodv
“Reczj 3 fff 173931, yrec™ 1,y ™3737'3

T4

2.2, 2
where vy =\/vStvar = AnJZ from (A-21)

n
1 = )
= = (Gn >
Py n
Iong n‘j nJion
v

where ax
= nz
<°njion> fff cndiondg’e da42 v4dv4

1s the mean effectlive area for lonization, and

n
by =n, <o, >
ARGCZJ 1,g 31, rec
where n v .
<a,d > = ffj v3f° ® 4, 4. dv
31, yrec 373 31 gree 1oy 373

is the “mean effective area® for recombination.
In (A-78) kIRJg is the effective mean free path for

momentum transfer caused by ionization and recombination 1ﬁter-
actlons. It is defined by

A SR, tA tE 43 (A-79)
= -5 5 -2 z = -
IR A .
e T2y Mongy MRl Recy,
where v
1 _ H max 1.0 0.1 1
= = n nk
Py n, = fff (fpf) cos x, + £5f) cos x, Jo aQ
124, né £ g T A2y T2h Yoy nyion™2qy
2
d042c vydvy
H—l V3 M ‘
1 nnj max 3 n,j
Y = _ £
AR131 PRV Xl w3 31 zrecdglcmdn3dv3 :
and v
1 ni 3max 0.1 3 7y
i 0p -
M, T gl Jff 3 °9% X33 931 precdth , d05dvs .

‘ZJ
On summing (A 77) and (A-T8) over the various states, we
finally obtain:
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3,£° '
(5 =3 {(F 9% + (F, -fO)% (A4-80)
)on 2,3 0 Ijz Ionjz Ryj 7‘Rec‘e‘j
and a f ‘ - 1 717
- vi 3 = . A-B1
(‘sr)xon 2 Ay, (r-82)

3. Photoionization and Two-Body Recombination
Encounters

- On introducing the Lorentz approximation (Ayal)
into {A-50) we obtain after separation into even and odd powers

of _ nJ
%) 1200 g B9, (s
= 3 f H —_—— - £ g v A-82

( Fh 2 f[ ny 5 ny Ine tas tne ine
1

and nd
(Tefl 1 5,3 a3 (4-83)
=~ [ ff, g, P,Y a’v . A-83

tph ! 12 the e ins

When the small mass approximation is introduced Into these
equations and the result integrated over the heavy particle

velocity there results finally =1y
£ ffi 1 i Y] 0¥ '
£ = . <. ~ -
(Sen =2, it ¥ By (-84)
? ni Py 43

. “nk

and a f 1 N
(£, = -ve' s = (A-85)

5t 'Ph 4,3 Peny,
where :
5,0

= =n
A 1 1
Phlj né

For many cases of interest hvl > kTe and Eq. (A-39) can

be replaced in the above equations by the approximation
n n
?ij = Y uij - - (A-86)
né nt
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o '
Now, if we define FNE » ANE' and ANE as follows:

uy o, £9 o, e £9 Fr - PR
F. =f2 (EAE s KLy 5 (i Loy Ay
NE ln,k,J nnj Dy 7‘In‘j nnk wJ x;ﬁk n, £, Ionjﬁ 7‘Rec_e:].
w5 (n wligyd ) {0 (n-87)
n, 453 nj inl E ° )
0 1 1 1 N -« 11
M= S (5 +5F Y4+ S (x +x ) + 2 {F- )"
NE n,k,J )‘Inj )‘Ink n n,4,4 )‘Ionsz X‘Recl,j n n, 4,3 )‘thd n
(A-88)
and ’
M= 2 B0+ = (5 )+ = (5 ), (-89)

nodk M8, n n8g MRyy'n nkg \thd n

then Egs. {A-60) and (A-61), when combined with Eqs. (A-70, 71,
80, 81, 84, and 85), reduce to Eqs. (A-62) and (A-63) respective-
iy. FNE . Wwhich represents the gain of electrons to the set

- .=
v,d“v from nonelastic encounters, 1s composed as follows:

Tre first set of terms represent the superelastic and lnelastic
gain terms of {A-18). The second set of terms in (A-87) cor-
respond to the ionization and recombination gain of (A-34).

The remaining set of terms in (A-87) are the galn terms as a
result of phctolonization. ANE(V) is an effective mean free
patn for momentum transfer between electrons and heavy particles,
rasulting from norelastic encounters. 1If the. nonelastlc cross
sect;ons ave energy dependent only, we have ANE = %gE Thus,
we zan call AgE an effectlive mean free path for the nonelastic
processes 48 related to isotrople effects. When k %NE
only loss (ro the set) *terms appear in the eyaluation of

(8,11 /3t) g -

Now, if we define a momentum transfer mean free path A
which includes all the elastic and ronelastic anisotrople col-
lisional cortributions tc the kinetic equation as '

1 1

;
A XE ' xNE
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then (A-62) and (A-63) can be combined with {A-52) and (A-53)
to yleld

ar? 1

&_4__?%‘7{%‘,214 _;__E(l ar + 8£9)
v

O,v 0 O,v O,
0,7 v of ’ 0
- 1 - —-3——41 + 1 Yy = By~ )—— {(A-91)
0,0 39 2,0 -1,v} NE 7‘1%5:
and . 1 o 1
g{;_+q,g.§_ =_—--Jr(—a—--) . (A-92)

These equations are Eqs. (2) and (3) of Seetion II.
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APPENDIX B

DEVELOPMENT OF A GENERALIZED SPITZER-HARM EQUATION

In Section IV-A-2, we found that whenever X >> 6 , cor-
responding to a partially lonlzed gas, and Y < 6 the isotropic
part of the distribution function is Maxwellian although at an

elevated temperature. That 1s

» © =¥ = n,

, 91

3/2
faond

s given by

_aevz.

-

(B-1)

The anisotropic part of the distribution function is to be
determined from Eq. (25) which 1s rewritten below as (B-2):

df vf

'Y =
av E

1 B f

+ ("5—")

If now we represent fl as a multiple of fo, that is
1. D(v)fo . and make use of (B-1) and (4-59), (B-2) can be

written as

y =0
-2 vyi0 = - 2L 4 grr, (F°

o 1,v
+ 82 vi° (1
3,0

U

20 4p
2|‘ﬁvf -d—v-+

UJ{ )

+ 25 (59 - ep

3v°

2. 2
)D -3

o 1,0
+ I
-2,V

0 a°p
dv2

fODv -

%0

ﬁef 1,0
- (I

1,v
)

1,0

+ I
-2,V

(B-2)

w0 or ., 05
+ p(485vP%-28 ) 1z

=0 o,v
£°D ’
=3I

o,v

- I
0,0

2,0

s

0,0

+ 2T

v
+I

~1,v

(B-3)

The first twé terms in (B-3) correspond respectively to the
first two termslin (B-2); the remaining terms in (B-3) cor-

a_rf

respond to { € } . The mean electron energy is included in
ot

(B-3) tnrough fo and is represented explicitly by Be

The following iden%tities
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o,v
O g (5-4)
2,0 -1 v
and -

0,v  0,v 0y L
31 -1 +21 r_.n % eeeA (B-5)
0,0 2,0 -1,v €

where A = ¢(~/—‘e v)~ F v ¢ (s/'_‘ v)

and ¢(J_; v) = erf(J—; v) ,

which' can be verified after some algebra, can be used to ..
reduce {B-3) to

A 42 n D
Ng ee d D Nolee 1 dp
5 + = [¢-A(24 —=5) ]
2, dav v : 8.V av
+ [- T 4 g0 +. (483 +l—)(l£e—&)1x
- _)\E s ee e V3 2 B V2
e
fﬁ(g + Yo
- v2 BeV + 7
ﬁ 1,00 i,v 4 .2 l,v 1,0
=-2§v'y+3 =S (1 +1° )-zeov(I +1I ) . (B-6)
-2,V 1,0 3,0 =2,V -

The first term on the right-hand side of (B-6) corresponds

to the left-hand side of {B-2). The first term in the co-
efficient of D 1in {B-6) represents the slectron-heavy particle
collisions. The isotropic part of the distribution function

is related to the error function as follows:

ﬁ3/J,T.

n (= . (B-7)

Equation (B-7) can be used in conjunction with (B-6) to reduce
the coefficient of D . If (B-6) is multiplied by 2v3/neFeeA
it can be written as:
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1 4% : 2 v3
. + [¢-A(2 + Al —2-—-—[—-———5 - A4
B -d_é. 7 2 ev a— (;3- EIA‘eer_le)

3/2 ,,3 { B,  lw 1,v
+ 28 ¢‘]D—2 ~wy+2 (1 +1°
e O BTeeR e IV Yoy —1,0)

1,v l,0 )
- %BiV(I + I )} . (B-B) .

3,0 -2,V

If we define a term A. as

o

As Be € ee
which 1s similar to Spitzer and Harm's "A", the first term
or the right-hand side of {B-8) becomes
23 vuA

A
We now introduce some new Iintegrals defined by

3},(\,

2
I(x) = jx y'D(y) eV ay . (B-9)
0 .

These integrals were used by Spitzer and HiErm in Ref. 12. An

igonti+y can be established between the integrails In(x) and
v
2

from which we finds
P,V

P Heente I,(BeY) (B-10)
1,0 J"m/'e
1 v o :
3 o J:——37_;§ 5( B V) s . (B-?l)
and Lo uree e .
I-e,v o a v [Io(w) - IoWBv) 1. (B-12)
With these expressions we can rewrite (B 8) as
Lfg + [¢-a(2+ —2s) 12V D | (% + )
e o B R
25e3/2¢']n =R (VB v) + S(¥pv) {B-13)
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2x A 16x Io(w)

1 = s _6 .2 B-1}
where R (x) = - —p 3J} A {1 5 X ) ( )
and 3(x) = 16 {xI3(x)—xulo(x)+gx610(x)— gxIS(x)} . {B~15)

3f% A
In terms of the variable x , defined as = Jbev , {B-13)
becomes 5
9D 4 p(x0)E + ¢ (x)D = R (x) + 8(x) (B-16)
dx2 X
with P{x) and Q'(x) defined as follows:
p(x) = [-0(2 + =) 1FE (8-17)
2X
Q' (x) =35 - 2 (s - axe")- —2-214——— (B-18)
= - = - d
: X A AneFeehE

Equation (B-16) is the same form as the equation solved by

Spitzer and Hirm and the terms P(x) and S(x) become identical

to their P(x) and S(x) when T, = T, , which is the case
for weak electric flelds.

The mean free path for elastic electron-heavy particle
collisions given by (A-55) can be written as

n I
1 e’ ee 1 B
===+ 2I5 (B-19)
7\E v n A
where we have used
r F
1 ee ee

3= Zn -
PR YL o e

and the plasma approximation of My >> by in (Af57)' With
(B-19) Q'(x) can be written as

Q' (x) 1 %(¢ 2x3¢') 2x)+ [nereeﬁi s };4
x) = - - I Py
;E aiAneFee X n 'n
R 1
- 1 K[qb—ex o + 1+ —-2——~ s 1. (B-20)
ae elee @ 1
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The. last two terms in the bracket of (B-20) correspond respec-
tively to the electron-ion and electron-neutral collisions,
Equation (B-20) can also be written as

) _ o vEn(x)
Q' (x) = Q(x) - x V;;CET . (B-21)
For weak flelds [ = B] @{x) , defined by
Ax) = 35 - 26 - 2x3¢' + 1],
X

is identical to the @Q(x) presented by Spitzer and Hirm for

the case when thelr mean ionlc charge factor equals uhityl2
Equation (B-21) corresponds to (36) for the more general situ-
atlion of nonequipartition. The total electron-neutral collision
frequency vEn(x) is defined by

1
2.5 =, {B-22)
k
Jbe n
When the plasma is fully ionized Q' (x) = &(x) .

The integral Io(m) appearing in (B-14) 1s evaluated
from the principle of conservation of momentum. If we take
the momentum moment of (1), or what is equivalent, multiply
(B-2) by v3dv and integrate over all v we find

3y n by
—Lﬁr—g=f‘{—Efdv . (B-23)
In getting this result we have made use of the fact that
electron self-interactions [represented by the last term in
(B-2) ] cannot change the total momentum of the electrons. If
(B-19) and £*-Df® are substituted into (B-23), we obtain
3v n,
T2 = n T, [0 av 4 gt z%—nfodv .

Ven(¥) =

With (B-1) this last equation can be written as
E

T
e ee

En

. o
—=fDe™ a4 j e™® pax (B-24)

e 0 oee
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where we have made use of the electron-¢lectron and total
electron-neutral collision frequencieb defined earlier. The
definitions of Io(w) and- A “enable us to write (B-2k) as

_¥w, _ " VB F ,
Iol=) = T3~ A 6( Ves e Dax . (B-25)

For a fully lonlzed gas (single 1onized) this reduces to

Spitzer and Hérm's result.
with {B=25) " R'(k) can be written as

R'(x) = R(x) - 25 (1- 63 [ :—E“(—IXT) e pax  (B-26)

3J%A 0 ee'¥

where R(x) 1s defined by 6
2.4x7 A

R(x) = - T .

For weak electric fields this R(x) is identical to that
gilven by Spltzer and Hﬁrml2 when their mean ionic charge factor
equals unity. Equation (B-26) is equivalent to (37) for the
more general case of ndnequipartition. When the plasma is fully
ionized R'(x) = R(x)

Equations (57), (58), and (59), applicable when nonelastic
effects are being considered, can be derived for both weak and
strong fields in a manner analogous to that outlined above by

simply replacing RE by A throughout the analysis.
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APPENDIX C
— COMPUTATION PROCEDURE

Equations (42, 30, 41, 4, and 6) for © , P~ , the
conductivity, the current density, and the electron temperature
aiong with the energy equation and the Saha eguation have been
programmed in FORTRAN IV and solved by an iterative technique’
on the Stanford IBM 7090 digital computer in the region where
X << 1 on Flg.' 1. The program evaluates the above quantities
based on the plasma constituents, thelr energy-dependent cross
sections, the gas temperature, the total pressure, and the
strength of the applied field. The elastic collision cross
sections used in the calculations were obtained from Refs.
24 (argon) and 25 (potassium, helium).

The procedure was to first make a consistent calculation
of the electron temperature based on a simple energy valance
and the -Saha eguation. In making this calculation the Saha
equaticn was evaluated at a guessed Te to obtaln n, . This
electron number density was used, along with the total pressure
and the seed fraction, to determine, via Dalton's law of partial
pressures, the number densities cf the remaining plasma constit-
uents, These resulting number densities were then used with a
Maxwellian distribution function (also evaluated at the guessed
Te) in tne energy equation (39) to calculate a new electron
temperature. This new temperature replaced the guessed T

1

s
and the calculation repeated until convergence was obtaineg
in T .

Next to evaluate the exponential in (42) .for fo, we
assumed that fo was a Maxwellain at T where this electron
temperature is that obtalned in the previous paragraph. We
then calculated a first approximation for fo and T . In
this calculation N0 was determined by normalizing f to
the electron number density (obtalned via the Saha equation
evaluated at the assumed Te }, and Te was obtained through
(6). If the newly calculated values of fo and Te' did not
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agree to within 1% (at every value of the electron speed) and
0.1% respectively of their assumed values, the calculation was
repeated with the 1nit1aily assumed values of fo and Te

being replaced by the first approximations. This iterative
procedure utilized the Saha equation and Dalton's law of partial
pressured for a gilven seed fraction and total pressure, to
determine the specles number densities, in conjunction with

(42) and (6). The iteration continued until convergence to
within the aforementioned criteria in Te " and fo was obtained.
An energy balance (39) was used %o check on the results. Once
consistent results were achieved, the desired properties were
calculated using Egs. (30), (4), and (5).

In performing the integrations assocliated with these
computations, Simpson's rule for numerical integration was
used with a step size for the electron speed in (eV)l/e of
5 x 10"3. The integration was performed over the electron
speed range of O to 5 (eV)l 2, fTest calculations with a
larger step size did not noticeably change the results. Typi-
cally for the same constituents, total pressure, and gas tem-
perature, less than a minute of computer time was required to
obtaln results of fo, Te, o, and Je for a given field
strength.

During the early course of these calculations it was
found that whenever fO was very close to Maxwellian Te
remained essentlally unchanged, within the test criterion of
the computer, even for a great number of iterations. For
these cases 1t was necessary to employ an energy balance to
obtain the electron temperature* . This peculiarity, which
for these cases is a result of the dominance of the electron-
electron interaction terms in (42), led to the ordering of
the calculation as outlined above. By performing the simple
energy balance calculation first we obtained rapid convergence
for fo and Te whenever the distribution function was
Maxwellian. No convergence difficulties were encountered
when fo was non-Maxwelllan.

* A similar approach was used in Ref. 18.
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